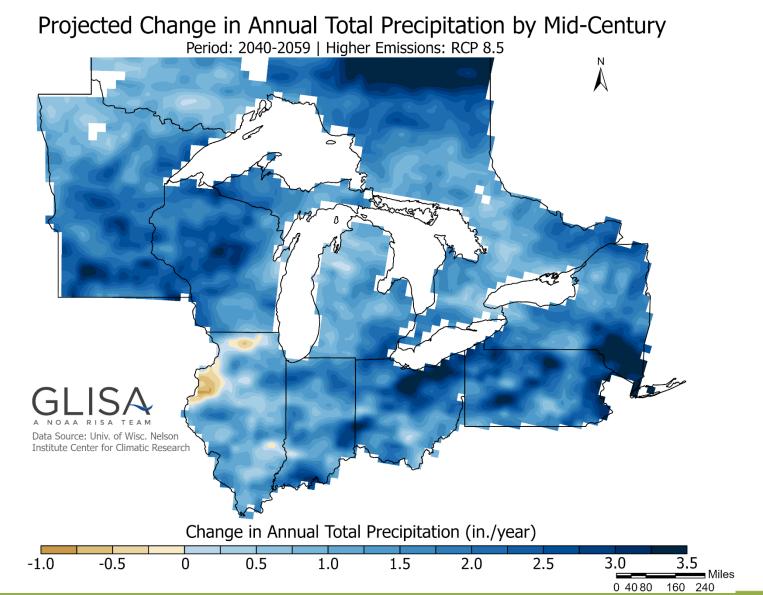


Irrigation Research Update


Younsuk Dong and Lyndon Kelley

Department of Biosystems and Agricultural Engineering Michigan State University Extension

Michiana Irrigated Corn and Soybean Workshop Feb. 26, 2024

Impacts of Climate Change on Water Management in Agriculture

MICHIGAN STATE UNIVERSITY Extension

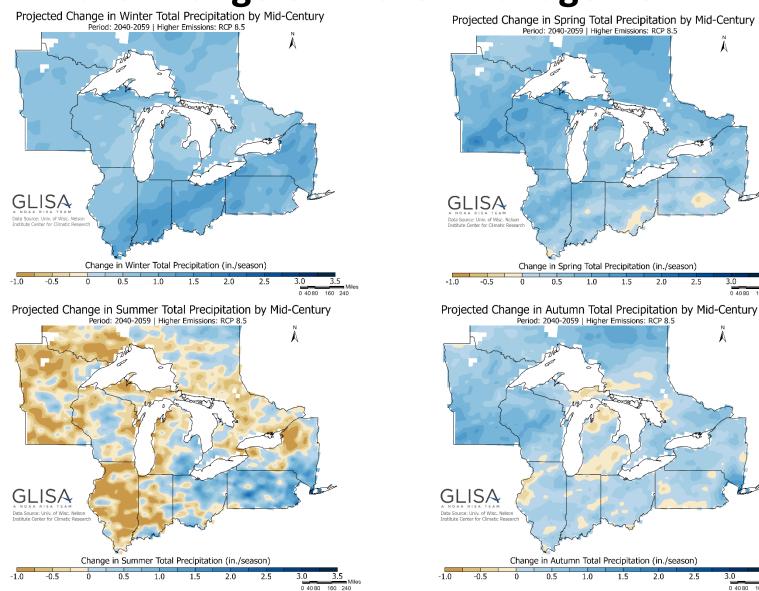
Impacts of Climate Change on Water Management in Agriculture

1.5

2.0

2.0

2.5


3.0

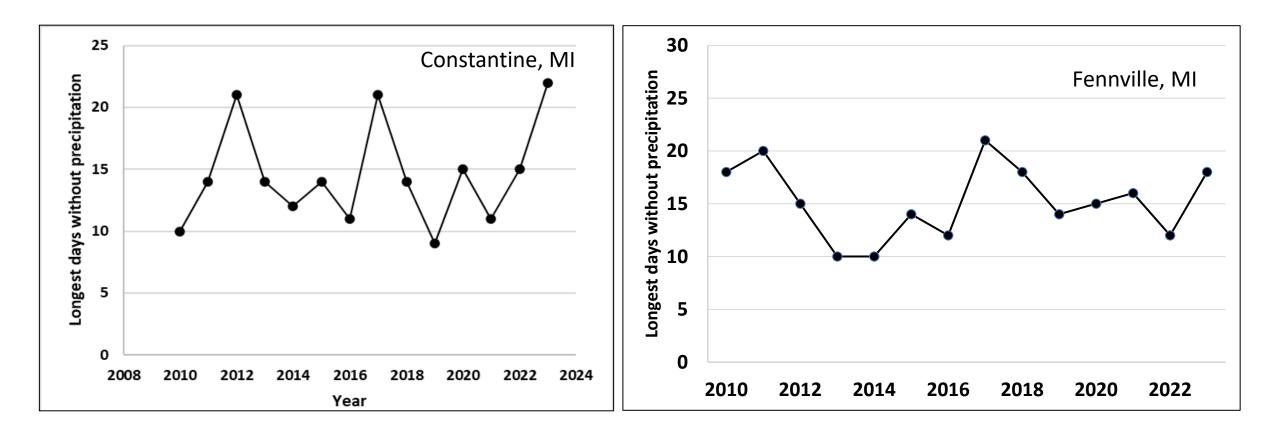
0 40 80 160 240

1.5

2.5

0 40 80 160 240

MICHIGAN STATE UNIVERSITY Extension



Department of Biosystems Agricultural Engineering

Impacts of Climate Change on Water Management in Agriculture

MICHIGAN STATE

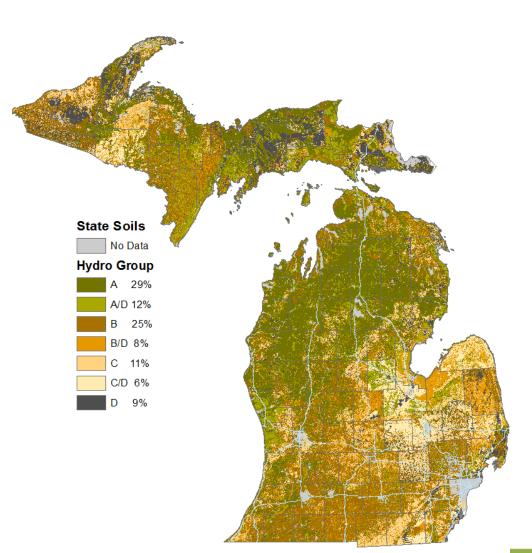
Extension

Longest period without precipitation during the growing season (May - September). Most seasons require irrigation to prevent yield loss.

USDA Hydrological Soil Map - Michigan

Natural Resources Conservation Service (NRCS) classified soils based on texture and water table depth into Hydrologic Soil Groups.

Extension


Example Texture of Each Soil Group

A: Sands or gravelB: Sandy loam, loam, silt loam, and siltC: Clay loamD: Clay

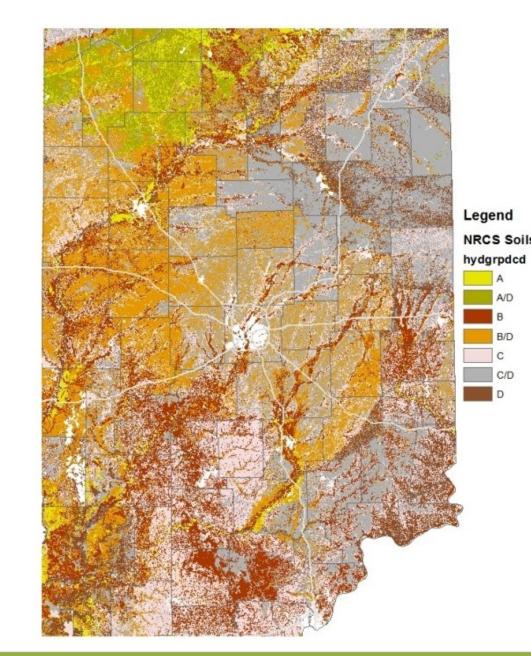
Group A/D, B/D, C/D

 $\frac{\text{MICHIGAN STATE}}{U N I V E R S I T Y}$

Soils classified as A/D, B/D and C/D have a <u>high water table</u>, which means low ability to move the water out of the root zone. If it is drained, it is considered as the first letter.

Hydrological Soil Map - Indiana

Natural Resources Conservation Service (NRCS) classified soils based on texture and water table depth into Hydrologic Soil Groups.

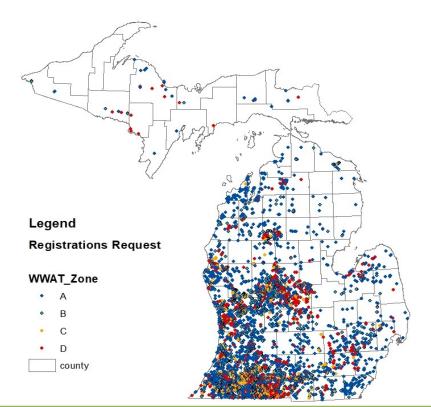

Example Texture of Each Soil Group

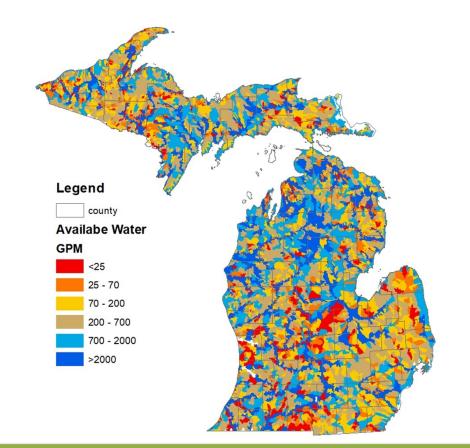
A: Sands or gravelB: Sandy loam, loam, silt loam, and siltC: Clay loamD: Clay

Group A/D, B/D, C/D

Soils classified as A/D, B/D and C/D have a <u>high water table</u>, which means low ability to move the water out of the root zone. If it is drained, it is considered as the first letter.

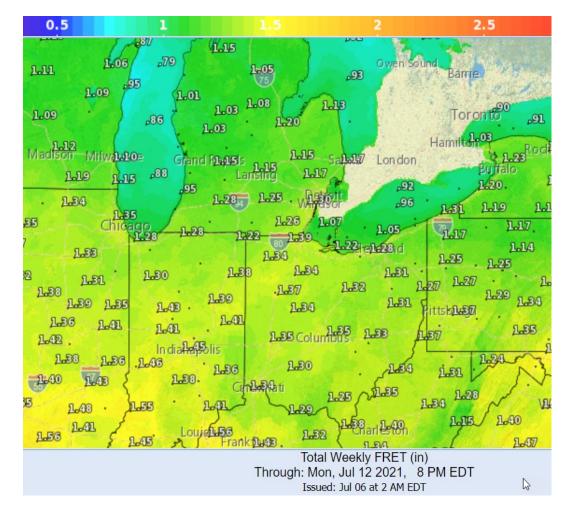
$\frac{\text{MICHIGAN STATE}}{U N I V E R S I T Y} | \text{Extension}$




UNCHARTED WATERS

America Is Using Up Its Groundwater Like There's No Tomorrow

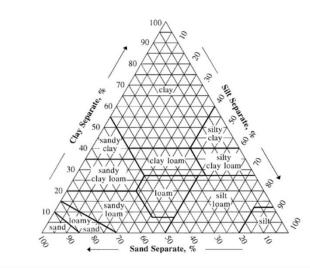
Overuse is draining and damaging aquifers nationwide, a New York Times data investigation revealed.


Registration <u>request</u> (using data Available November 2021)

Irrigation Scheduling

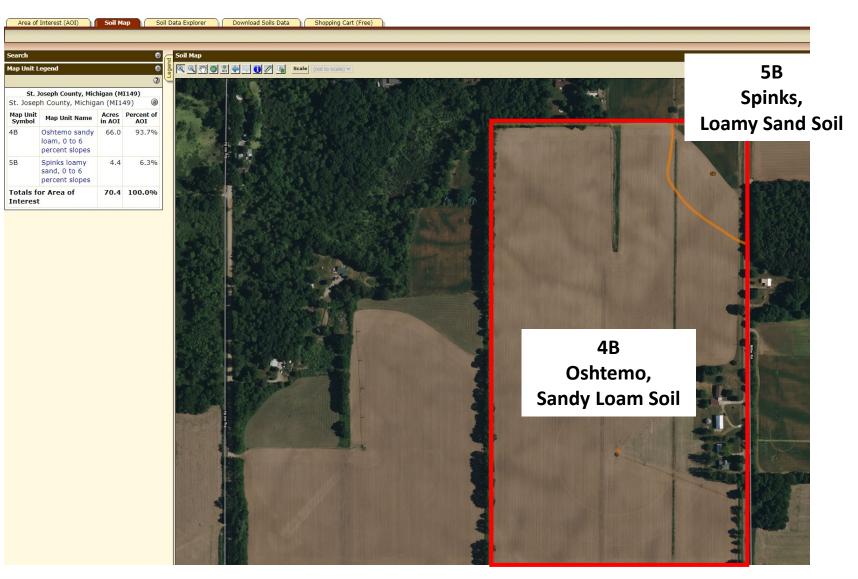
Weather-based Irrigation Scheduling

Sensor-based Irrigation Scheduling



Water Holding Capacity - Soil Sampling

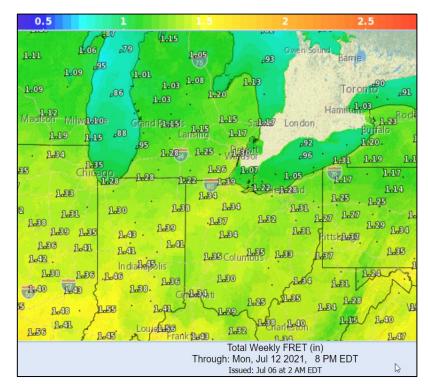
MICHIGAN STATE UNIVERSITY Extension



Natural Resour	tment of Agriculture ces Conservation Service Home Ato You are here: Web Soil Survey Home	DOUL SOILS Help Contact U
Search Enter Keyword Go All NRCS Sites V Browse by Subject	The simple vet powerful yay to access and use soil data.	l Want To • Start Web Soil Survey (WSS) • Know Web Soil Survey Requirements
 Soils Home National Cooperative Soil Survey (NCSS) Archived Soil Surveys Status Maps Official Soil Series Descriptions (OSD) Series Extent Explorer Geospatial Data 	Welcome to Web Soil Survey (WSS) Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation Service (NRCS) and provides access to the largest natural resource information system in the world. NRCS has soil maps and data available online for more than 95 percent of the nation's counties and anticipates having 100 percent in the near future. The site is updated and maintained online as the single authoritative source of soil survey information.	 Know Web Soil Survey operation hours Find what areas of the U.S. have soil data Find information by topic Know how to hyperlink from other documents to Web Soil Survey Know the SSURGO data structure Use Web Soil
Gateway ◦ eFOTG ◦ National Soil Characterization Data ◦ Soil Health ◦ Soil Geography	Soil surveys can be used for general farm, local, and wider area planning. Onsite investigation is needed in some cases, such as soil quality assessments and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center at the following link: <u>USDA Service</u> <u>Center</u> or your NRCS State Soil Scientist at the following link: <u>NRCS State Soil Scientist</u> .	Survey on a mobile device Announcements/Events • Web Soil Survey 3.4.0 has been released! View

Water Holding Capacity - USDA Web Soil Survey

MICHIGAN STATE UNIVERSITY Extension



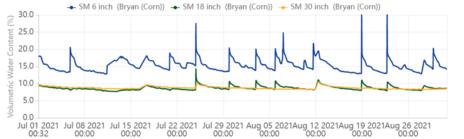
11

Current Irrigation Management Practices

Weather-based Irrigation Scheduling

Extension

$$ET_C = K_C * rPET$$


Where,

MICHIGAN STATE

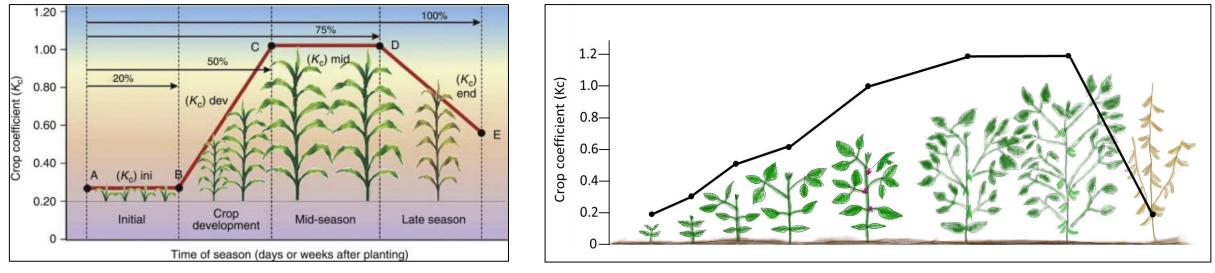
- ET_C = Actual Crop Evapotranspiration (in/day) K_C = Crop Coefficient (unitless multiplier)
- rPET = Reference Potential Evapotranspiration (in/day)

Sensor-based Irrigation Scheduling

Weather-based Irrigation Scheduling - Crop Evapotranspiration

 $ET_C = rPET * K_C$

Where,

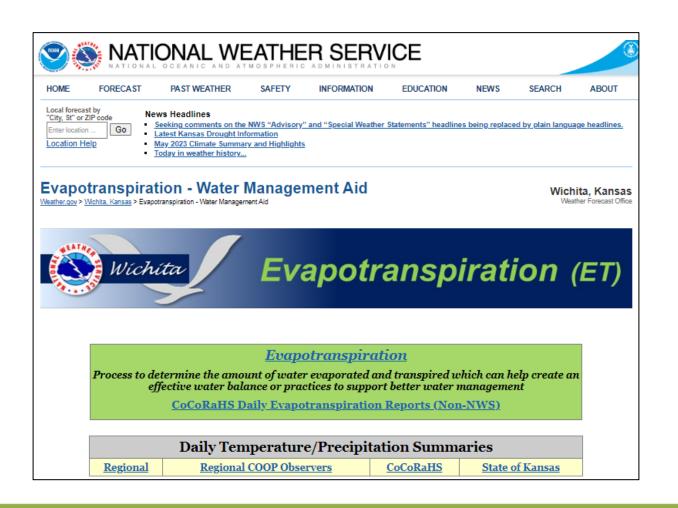

Extension

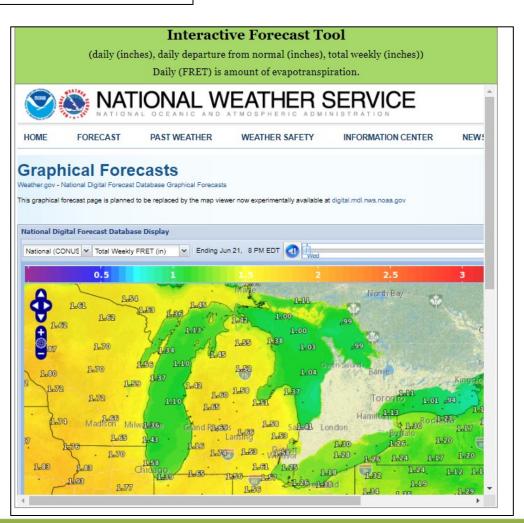
MICHIGAN STATE UNIVERSITY

 ET_C = Actual Crop Evapotranspiration (in/day)

rPET = Reference Potential Evapotranspiration (in/day)

 K_C = Crop Coefficient (unitless multiplier)


Corn Kc (Pokorny, 2019)


Soybean Kc

Reference Potential Evapotranspiration

https://www.weather.gov/ict/Evapotranspiration

Reference Potential Evapotranspiration

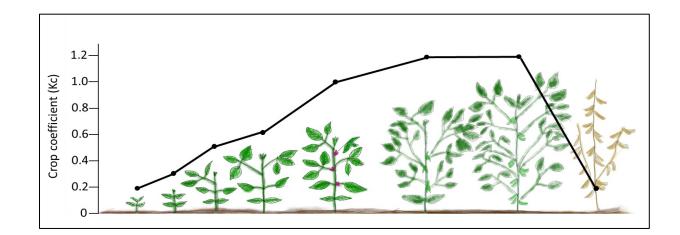
MICHIGAN STATE	UNIVERSITY			Search	PURDUE UNIVERSITY
Enviroweather					
Home Weather 0	Crops Information			Login Re	Home About V Data V Climate Maps V Tools V Publications V
Summary	Degree Day Tools	Maps	Irrigation Tools		About Get Involved Data Hub Station Information
Temperature, Rainfall and Degree day summary	Regional Degree Day Summary	Growing Degree- Days (50) Latest	Sign up for RPET Text Alerts		PURDUE MESONET Data Hub
Meteogram	Degree Day Summary last 5 yr	Observations	MSU Irrigation Scheduler		Welcome to the Purdue Mesonet Data Hub
Overnight Temperatures	Precipitation	NOAA NWS Radar - Great Lakes	MSU Irrigation Resources		In the Data Hub, you can gain access to real-time weather data via map view or search for 30-minute, hourly, and daily historical weather data in graphical and tabular format. To get started, view weather conditions around the state in the map below or click on a station to access historical data. Need help? - View Data Hub Instructions
Soil Conditions	Rainfall summary, historical	Temperature Inversion Potential	Soil Water Balance Sheet (download pdf)		Recent Conditions at CCCS (## of 12# 3 44 ± 1000 2 % L57) Past 24 Hours at CCCS Station ID Air Temperature (°F) 33.44 Avg. Air Temperature (°F) 36.9 Wind Speed (mph) 0.00 Maximum Air Temperature (°F) 57.0
	Regional Rainfall Comparison	More Information	Potential Evapotranspiration Daily Summary		Wind Speed (inpli) 0.00 Windminum Air Temperature (°F) 57.0 Wind Gust (MPH) 0.67 Minimum Air Temperature (°F) 21.6 Wind Direction (°) 95 Total Precipitation (in.) 0.00
		Data on Demand (in development)			Dewpoint Temperature (°F) 21.07 평균 4" Soil Temperature (°F) 41.36 Avg. Dewpoint Temperature (°F) 19.9
					Rask 7 Days at CCCC

MSU Enviroweather Program

Extension

$$ET_C = K_C * rPET$$

 $ET_C = 1.1 * 0.83 in = 0.91 in$

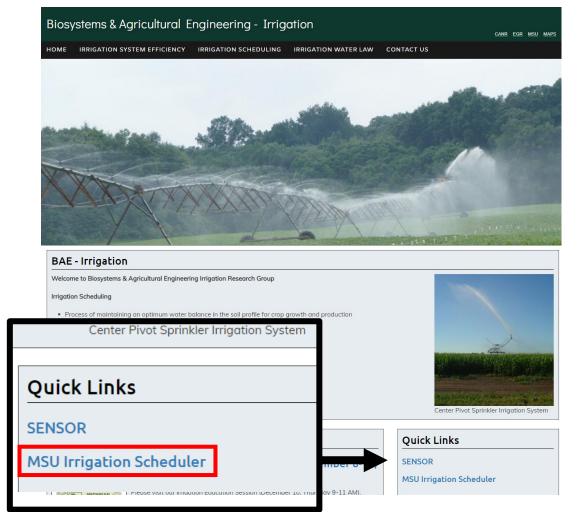

Where,

MICHIGAN STATE

 ET_C = Actual Crop Evapotranspiration (in/day)

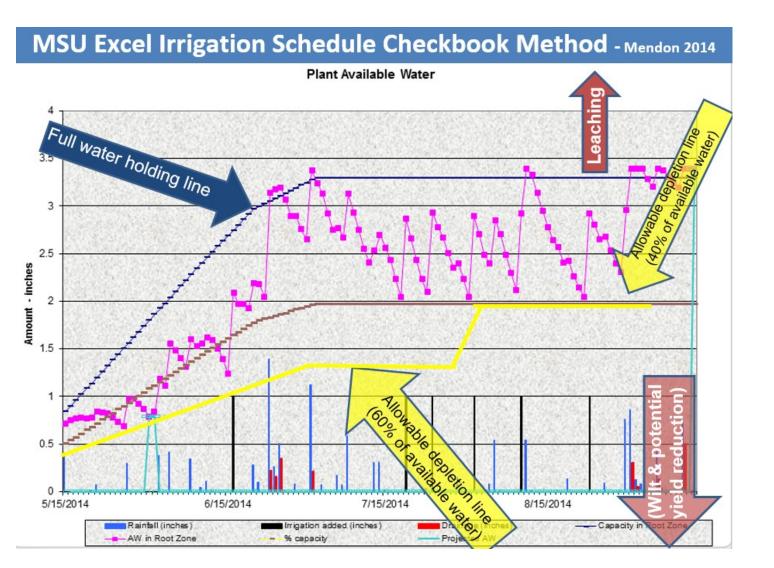
 K_C = Crop Coefficient (unitless multiplier)

rPET = Reference Potential Evapotranspiration (in/day)


https://www.egr.msu.edu/bae/water/irrigation/

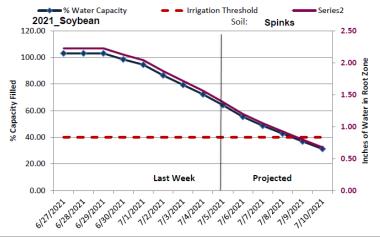
MSU Irrigation Scheduler Program

File	Home Insert D	raw Page Layout	Formulas	Data Review	View H	elp	
Paste	Cut Aria			= = = ≫~			General
~	💞 Format Painter 🛛 🖁	I <u>U</u> ~ <u>H</u> ~			Merge	e & Center 🗸	\$ ~ %
	د Clipboard	Font	l⊒ l	Aligi	nment	5	Nu
E82	- : × v	fx					
	A B C	D E F	G H	I J	к	L M	N
1						2	
2 3 4	MSU Irrigation School (Version	eduler Program N n 4.0 - May 1, 2018) For					
5 6 7 8 9	Set Up This Irrigatio (Field ID, Crop, Soil	n Schedule Type, Etc.)		vailable Water By Stage in This Field			
10 11 12 13 14	Download Weather Enviroweather			oisture Graph For Schedule			
15 16 17 18 19	Enter Your Irrigation Data	and Rainfall		ater Use Report for is Field			
20 21 22 23 24	Generate Detailed S Report for Last 7 Day			gation and Rainfall			
25 26 27	Forcast ET O	utlook		asy Sytem			
28 29 30							


MICHIGAN STATE UNIVERSITY Extension

www.egr.msu.edu/bae/water/irrigation

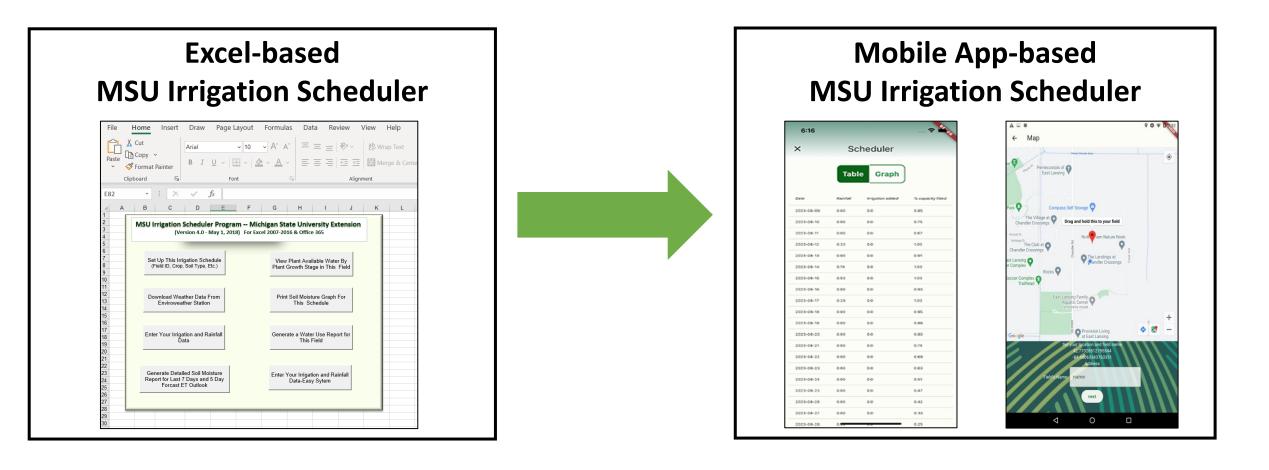
MSU Irrigation Scheduler Program


MICHIGAN STATE UNIVERSITY Extension

St. Joseph County Soil and Water Conservation District Irrigation Scheduling Service Weekly Water Balance Report and Et Outlook for Next 5 Days Generated: 07/06/21 MSU Irrigation Scheduler

	moo inigation ochedater
Field Name	2021_Soybean
Crop:	Soybeans24
Emergence Date:	5/16/2021

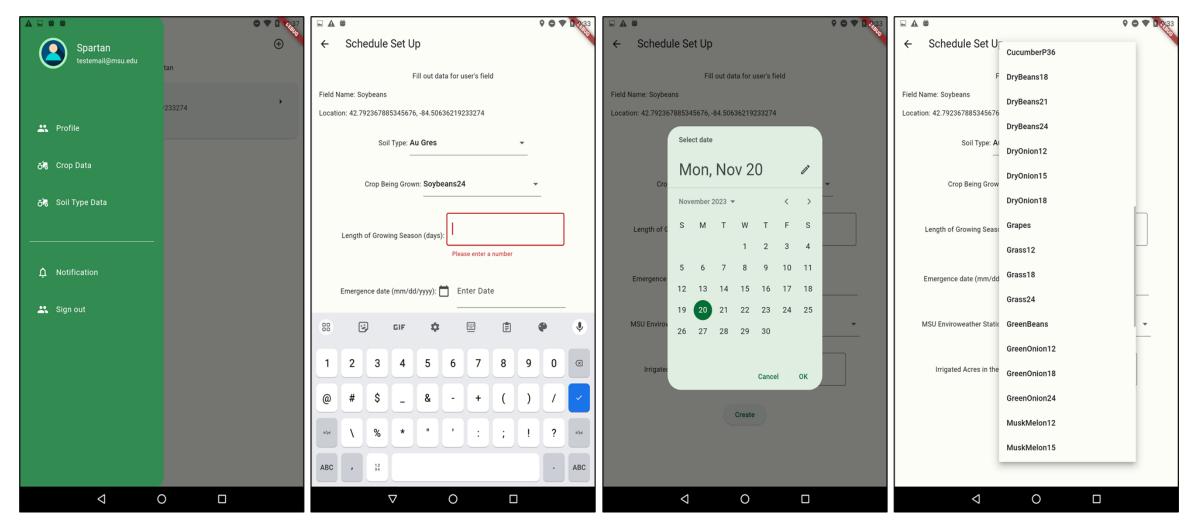
						AW Above	Additional
Date	Rainfall	Irrigation	Crop Et	Forecasted Et	Drainage	Threshold	Capacity
6/27/2021	0.16		0.06		0.02	1.30	0.0
6/28/2021	0.32		0.11		0.21	1.30	0.0
6/29/2021	1.18		0.11		1.07	1.30	0.0
6/30/2021	0.02		0.12		0.00	1.26	0.0
7/1/2021	0		0.09		0.00	1.18	0.1
7/2/2021	0		0.17		0.00	1.00	0.2
7/3/2021	0		0.15		0.00	0.85	0.4
7/4/2021	0		0.15		0.00	0.70	0.6
7/5/2021	0		0.18		0.00	0.52	0.7
7/6/2021			0.1888		0.00	0.33	0.9
7/7/2021				0.15	0.00	0.19	1.1
7/8/2021				0.13	0.00	0.06	1.2
7/9/2021				0.13	0.00	-0.07	1.3
7/10/2021				0.12	0.00	-0.19	1.4
Totals	1.68	0	1.14	0.52	1.30		


Please note: projected values do not include forecasted rainfall, only the outlook Et values. Irrigation Threshold: Dropping below this level may cause yield loss. To avoid, initiate irrigation. Enviroweather Station Selected: Constantine

Updating MSU Irrigation Scheduler – (In-progress)

MICHIGAN STATE UNIVERSITY

Extension

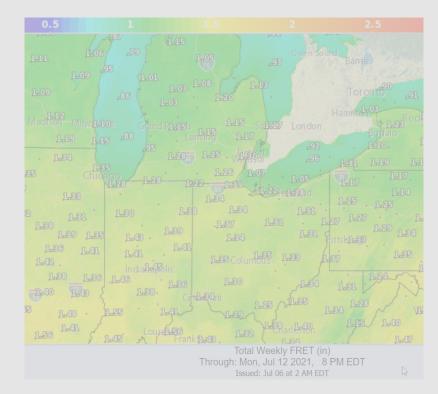


MSU Irrigation Scheduling Mobile App (In-progress)

MICHIGAN STATE UNIVERSITY

Extension

If you are interested in trying Beta version, please leave a note it in the survey.

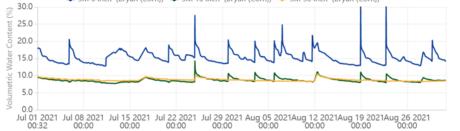


20

Current Irrigation Management Practices

Weather-based Irrigation Scheduling

MICHIGAN STATE UNIVERSITY Extension


Where,

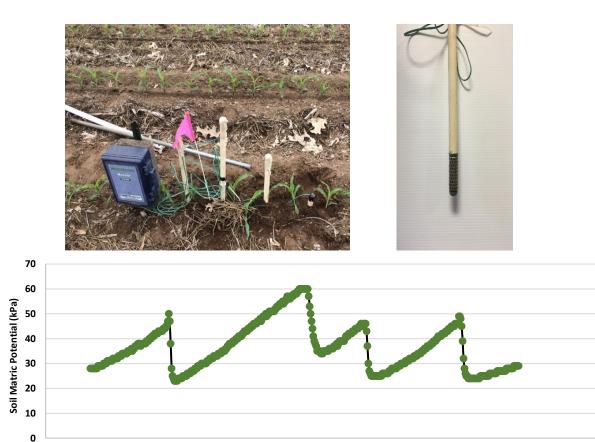
 ET_C = Actual Crop Evapotranspiration (in/day) K_C = Crop Coefficient (unitless multiplier) rPET = Reference Potential Evapotranspiration (in/day)

 $ET_C = K_C * rPET$

Sensor-based Irrigation Scheduling

Soil Moisture Sensor-based Irrigation Scheduling Method

 $\frac{\text{MICHIGAN STATE}}{U N I V E R S I T Y} | \text{Extension}$


7/19

7/24

Soil Tension – WATERMARK Sensor

Measures the actual soil water tension, which indicates the effort required by root system to extract water from the soil.

7/29

Time

8/3

8/8

8/13

Soil Matric Potential for 30%, 50%, and 70% of soil water depletion for different soil types (Irmak et al., 2014)

Soil texture	Depletion in water holding capacity (kPa)						
	30%	50%	70%				
Sand	20	30	60				
Loamy sand	25	40	67				
Sandy loam	28	50	80				
Silt loam	80	150	250				

Frequency Domain Reflectometry – Volumetric Water Content

Frequency Domain Reflectometry (FDR) sensors measure soil water content using the dielectric properties of soil which are highly dependent on moisture content.

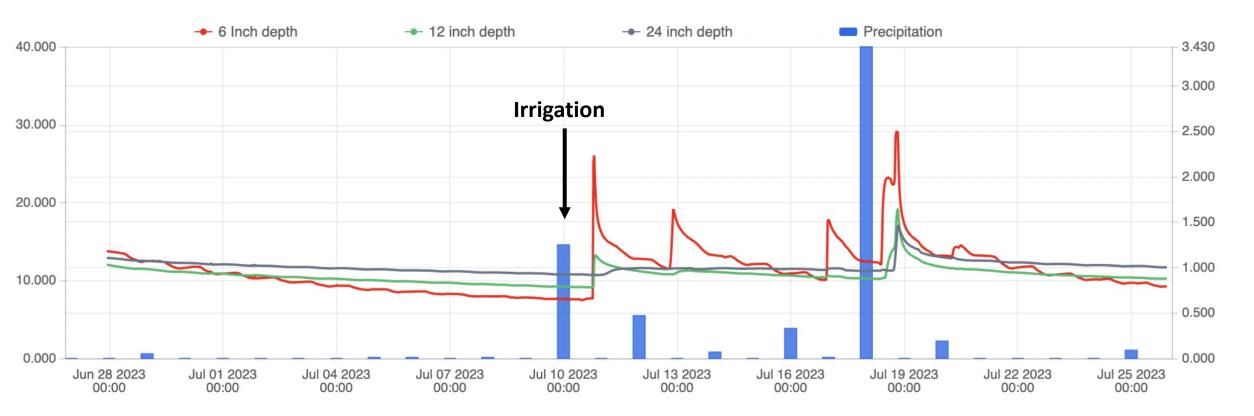
Extension

MICHIGAN STATE

Material	Dielectric permittivity
Air	1
Soil Minearls	3~7
Organic Matter	2~5
Ice	5
Water	80

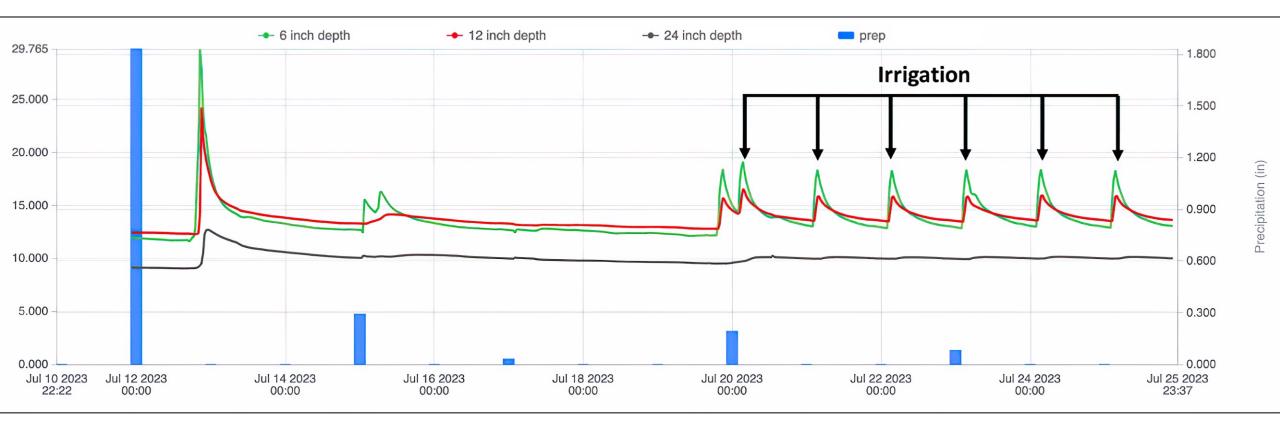
Recommended irrigation trigger point for different soil types

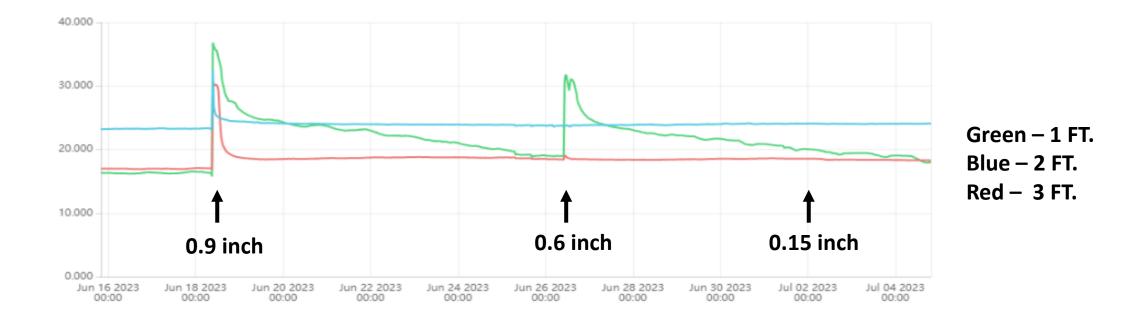
Soil Texture	Trigger Point Range (Irrigate when VWC falls below these values)
Sand	7 - 8 %
Loamy Sand	8 -10 %
Sandy Loam	12 - 15 %
Loam	20 - 26 %
Soil Moisture Levels 30.0 25.0 15.0 5.0 0.0 Solution 30.0 5.0 0.0 Solution 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 0	inch (Bryan (Corn)) ← SM 18 inch (Bryan (Corn)) ← SM 30 inch (Bryan (Corn))


01 2021 Jul 08 2021 Jul 15 2021 Jul 22 2021 Jul 29 2021 Aug 05 2021Aug 12 2021Aug 19 2021Aug 26 2021 10:32 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Center Pivot Irrigation - 2023

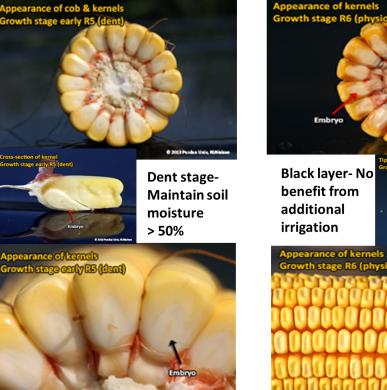
Extension

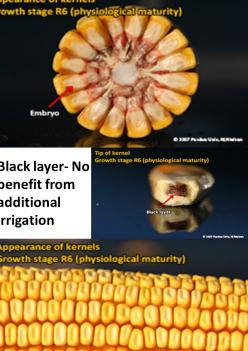

MICHIGAN STATE


Drip Irrigation - 2023

MICHIGAN STATE | Extension

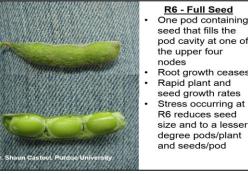
Tekonsha, MI


Crop type: Commercial Corn Stage (7/4/23): V5 Soil: Oshtemo Sandy Loam Soil



Recommended Irrigation Management - Corn

Most critical time for Corn plants to have adequate water is from VT until R6.


Recommended Irrigation Management - Soybean

- Most critical times for Soybean plants to have adequate water are during pod development (R3 - R4) and seed fill (R5 - R6).
- Not enough moisture during the critical stages (R3-R6) in sandy soil field can reduce yield up to 28 bu/acre.

MICHIGAN STATE

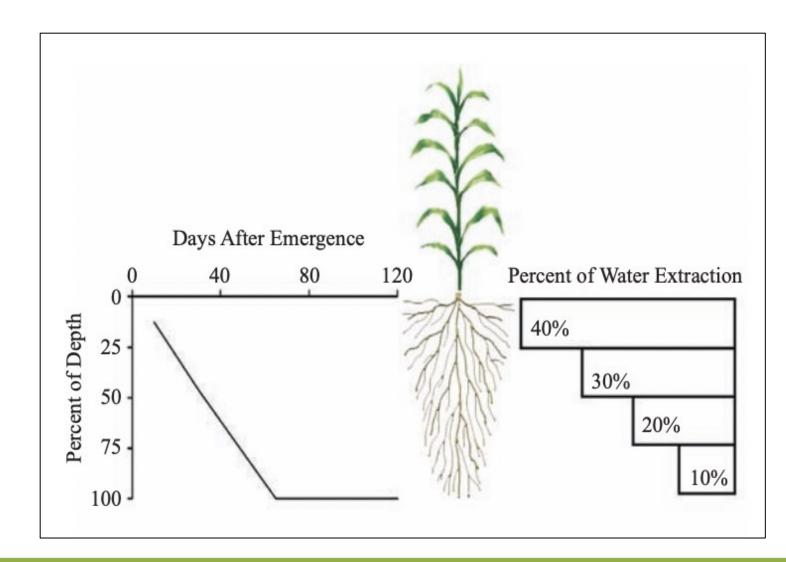
UNIVERSI

Source: Shaun Casteel, Purdue University.

Extension

Stages	Average numbers of days	Range in number of days
Planning to VE	10	5 to 15
VE to VC	5	3 to 10
VC to V1	5	3 to 10
V1 to V2	5	3 to 10
V2 to V3	5	3 to 10
V3 to V4	5	3 to 8
V4 to V5	5	3 to 8
Beyond V5	3	2 to 5
R1 to R2	3	0 to 7
R2 to R3	10	5 to 15
R3 to R4	9	5 to 15
R4 to R5	9	4 to 26
R5 to R6	15	11 to 20
R6 to R7	18	9 to 30
R7 to R8	9	7 to 18

Source: University of Minnesota

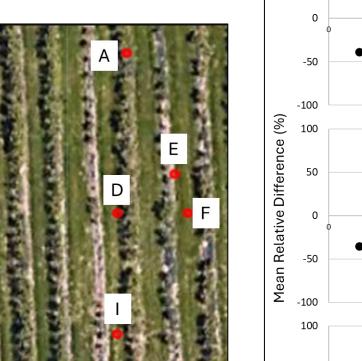

Sensor Installation Considerations

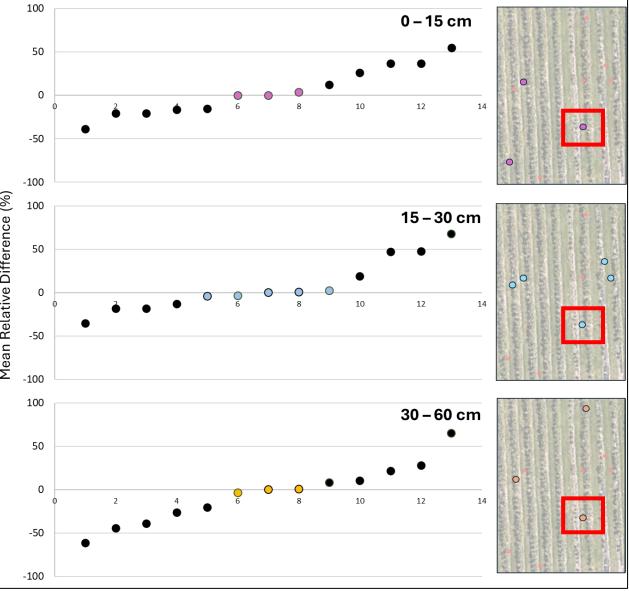
Extension

• Root depth.

GAN STATE

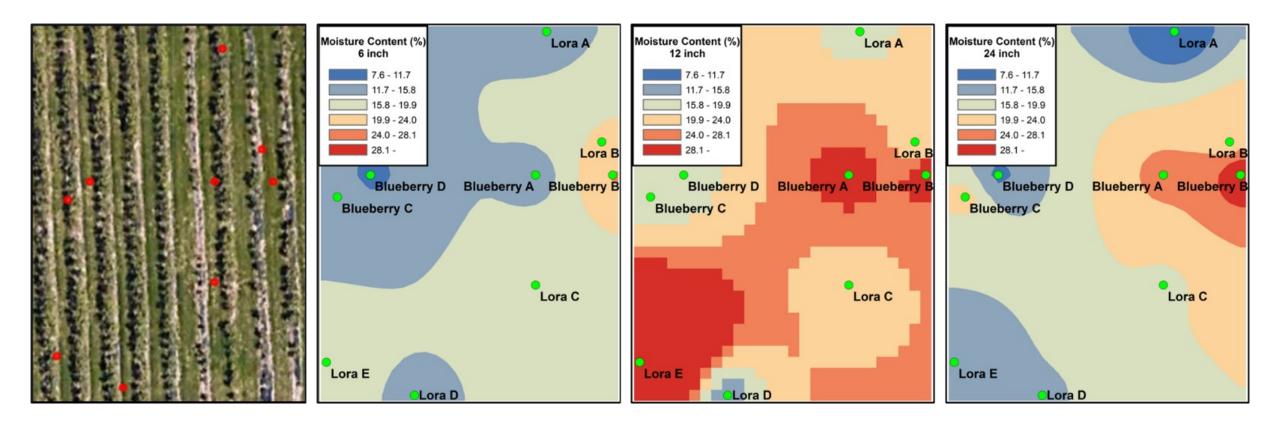
- Representative area.
 - \circ Soil type
 - \circ Slope
 - Crop type
- Installation technique (No air gap)

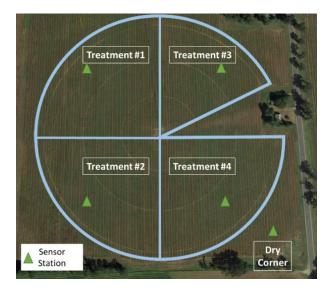

Sensor Installation Considerations

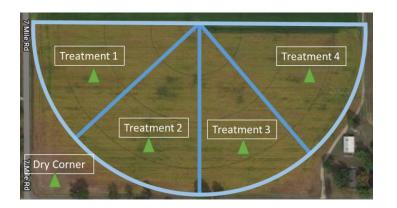

- Root depth.
- Representative area.

MICHIGAN STATE UNIVERSITY Extension

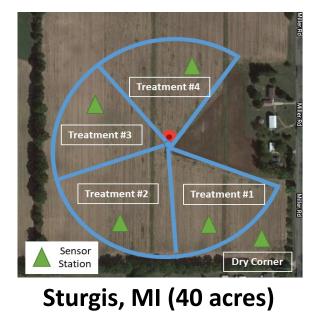
- \circ Soil type
- \circ Slope
- Crop type
- Installation technique (No air gap)

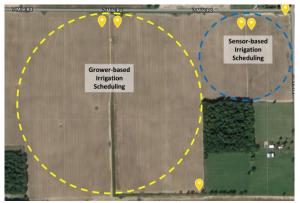

B



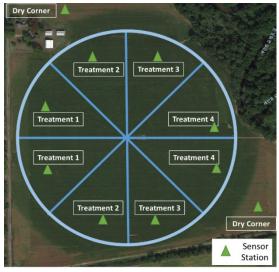


Irrigation Management with IoT Technology – Corn & Soybean & Potato

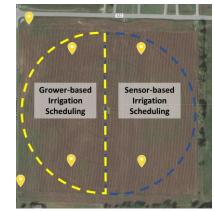



MICHIGAN STATE UNIVERSITY Extension

Constantine, MI (40 acres)



Union City, MI (40 acres)



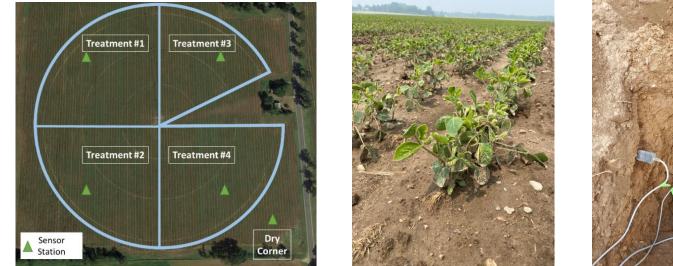
Mecosta, MI (80 acres)

Tekonsha, MI (70 acres)

Lakeview, MI (40 acres)

Corn Irrigation On-Farm Demonstration Project Updates

Extension


Irrigation Treatment	Yield (bu/acre)	Irrigation Water Use Efficiency (bu/acre-inch)	Value (\$/acre-inch)*
Producer's Irrigation Management	305	19.5	132
100% Irrigation Scheduling	319	22.4	152
130% Irrigation Scheduling	319	19.3	131
70% Irrigation Scheduling	309	20.3	137
Dry Corner	218		

*Assumed that corn price is \$6.77/Bushel (1/20/23)

MICHIGAN STATE UNIVERSITY

Soybean Irrigation On-Farm Demonstration Project Updates

Sensor Station	Dry Corner		
Irrigation Treatment	Yield (bu/acre)	Irrigation Water Use Efficiency (bu/acre-inch)	Value (\$/acre-inch)
Producer's Irrigation Management	64	6.3	9
100% Irrigation Scheduling	66	8	122
130% Irrigation Scheduling	66	6	92
70% Irrigation Scheduling	58	4.5	69
Dry Corner	54		

**Assumed that soybean price is \$15.3/Bushel (1/19/23)

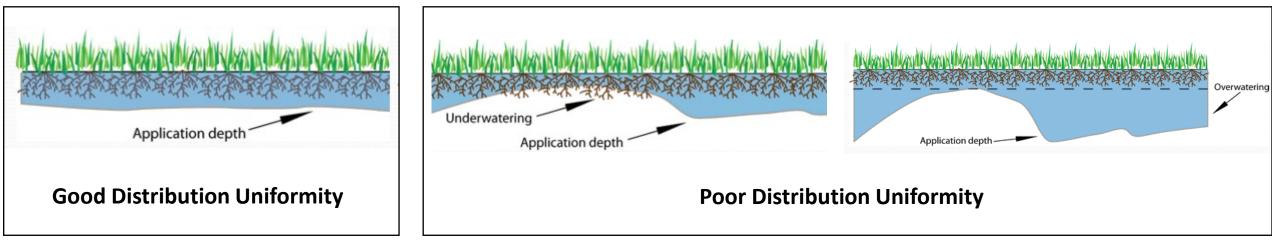
Extension

MICHIGAN STATE UNIVERSITY

Irrigation System Uniformity Evaluation

MICHIGAN STATE UNIVERSITY Extension

The precision of the uniformity testing decreases when wind exceed 2.2 mph. If wind speed goes beyond 11 mph, the test may not be a valid.



Importance of Checking Irrigation System Uniformity

- Poor water distribution can result in over- and under-irrigated areas.
- Under-irrigation can reduce crop yield and grain quality.

Extension

- Over-irrigation can cause runoff and leaching water and nutrients below the root zone.
- Low uniformity can negatively impact on a farm's net return and environmental impacts.

(MJC Irrigation Technology, n.d.)

Irrigation System Uniformity Evaluation

Extension

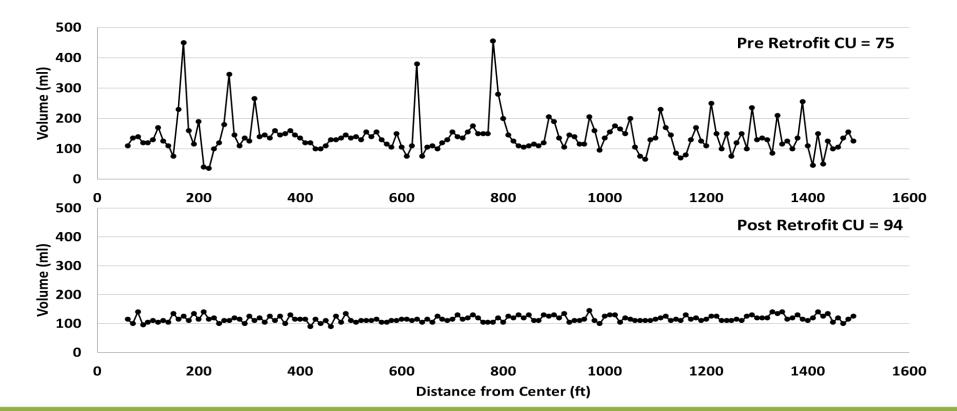
MICHIGAN STATE

2	Farm Name		arm										
2 3	annivanie		ann				System	Uniformi	itv Coefí	ficient =	79		
-	System Iden	tification	Cornering Arr	n System on		Farm-Behind House	•) • • • •				are 85 or greater	1	
5			Cornering Ar				D	eviation from			-0.04		
_	System Sett	tinas	Contening 7 a	II Extended					uconcu u	pheadon	-0.04		
7		ation rate (in)	0.5				Wind	speed (mph)		4 mph		PPI	
_	Percent time					Wind Cor		le or steady)		steady	41	Car.	
3		Pressue (psi)								,		Application der expe	
0	· ·		lication calc	ulator								· Oto	1/18
1					highest rate	section of system (mir	n.)	22		Inches/Hour	1.25	Ve	ົ້
2						stem (minute /one incl		48.00					Clar:
3							Average App	olication (cm)		1.164			~ ''
4	Lei	ngth of evaluation	ation area (ft)	1340			Average Ap	oplication (in)		0.46			
5	Catch	Can Spacing	Distance (ft)	10									
6						Average	catch, collec	ted only (ml)		88.95			
7	number of	fcans data c	ollected from	129				atch can (ml)		59.94			
8		numbe	r of cans set	134				circle (acres)		122.82			
9								area (sq cm)		76.977			
20	D	iameter of ca	tch can (cm)	9.9		catch	can opennin	g area (sq in)		11.767			
21									1				
22			Distance	catch	Data					Deviation	Area covered	Area covered	
23	catch can		from center	volume in	adjustment		Water	Water	% applied	from	per catch can		· ·
24	number		point	ml		Comments	volume (cm)		of average	average (%)		(% of total)	Deviatio
25	1		10		88.95		1.156	0.455	99.26%	-0.74%	0.01623	0.01%	0.0001
26	2		20		88.95		1.156	0.455	99.26%	-0.74%	0.02885	0.02%	0.0002
27	3		30		88.95		1.156	0.455	99.26%	-0.74%	0.04327	0.04%	0.0003
28	4		40		88.95		1.156	0.455	99.26%	-0.74%	0.05770	0.05%	0.0005
29	5		50		88.95		1.156	0.455	99.26%	-0.74%	0.07212	0.06%	0.0008
30 31	6		60	405	88.95		1.156	0.455	99.26%	-0.74%	0.08655	0.07%	0.0007
	7		70	125	0.00		1.624	0.639	139.48%	<u>39.48%</u>	0.10097	0.08%	0.0011
32	8		80	75	0.00		0.974	0.384	83.69%	- <u>16.31%</u>	0.11539	0.09%	0.0008
33 34	9 10		90 100	115 105	0.00		1.494	0.588	128.32% 117.16%	28.32%	0.12982 0.14424	0.11%	0.0014

If the CU is 85% or greater, the irrigation system is not likely to need major adjustments to the sprinkler package,

A CU of 80 to 85% may need further analysis of the sprinkler package, and individual sections of the irrigator would benefit from corrections.

A CU of less than 80% requires an adjustment to the sprinkler package design and correction of individual sections of the sprinkler package.


http://msue.anr.msu.edu/uploads/236/43605/lyndon/Uniformity_Spreadsheet_6.11.xls

Irrigation System Evaluation – Case study

Extension

- Material and labor costs for replacing sprinkler package were \$4,360 and \$2,220, respectively. Total cost was \$6,580.
- With \$1,617 in energy savings per year, the payback period of updating the sprinkler system is approximately **4 years**.

Looking for Collaborators!!

Younsuk Dong Lyndon Kelley dongyoun@msu.edu (517) 432-8751 (269) 467-5511

Support \$1,000 for the cost of the retrofit.

USDA NRCS EQIP (Environmental Quality Incentives Program)

MICHIGAN STATE UNIVERSITY Extension

United States Department of Agriculture 441-CPS-1 Natural Resources Conservation Service CONSERVATION PRACTICE STANDARD IRRIGATION SYSTEM, MICROIRRIGATION CODE 441 (Ac.)	Voited States Department of Agriculture 442-CPS-1 Natural Resources Conservation Service CONSERVATION PRACTICE STANDARD SPRINKLER SYSTEM Code 442 (Ac.)	Notice of Proposed Changes to the National Handbook of Conservation Practices for the Natural Resources Conservation Service Docket No. NRCS-2000-00011 ProPOSED FULL TEXT FOR PRACTICE STANDARD CODE 440 Vnited States Department of Agriculture Ad9-CPS-1 Natural Resources Conservation Service CONSERVATION PRACTICE STANDARD IRRIGATION WATER MANAGEMENT CODE 449 (ac)
An irrigation system for frequent application of small quantities of water on or below the soil surface: as drops, tiny streams, or miniature spray through emitters or applicators placed along a water delivery line. PURPOSE This practice is applied to achieve the following purpose: Efficiently and uniformly apply irrigation water and maintain soil moisture for plant growth. Prevent contamination of ground and surface water by efficiently and uniformly applying chemicals. Establish desired vegetation (e.g., windbreaks). CONDITIONS WHERE PRACTICE APPLIES This practice applies on sites where soils and topography are suitable for irrigation of crops or other desirable vegetation and an adequate supply of suitable quality water is available for the intended purpose(s). Microirrigation is suited to virtually all agricultural crops, and residential and commercial landscape systems. Microirrigation is also suited to steep slopes where other methods would cause excessive erosion, and areas where other application devices interfere with cultural operations. Microirrigation is suited for use in providing irrigation water in limited amounts to establish desired vegetation such as windbreaks, living snow fences, riparian forest buffers, and wildlife plantings. This practice standard applies to systems that wet only a specific area (e.g., an individual plant or tree) and typically have design discharge rates less than 60 gal/hr at individual application discharge points. Use NRCS Conservation Practice Standard (CPS) Code 442, Sprinkler System, for systems that uniformly wet the entire field and typically have design discharge rates of 60 gal/hr or greater at individual application discharge points.	DEFINITION A distribution system that applies water by means of nozzles operated under pressure. PURPOSE This practice is applied as part of a conservation management system to accomplish one or more of the following: • Efficient and uniform application of water on irrigated lands • Improve plant condition, productivity, health and vigor • Prevent the entry of excessive nutrients, organics, and other chemicals in surface and groundwater • Improve condition of soil contaminated with salts and other chemicals • Reduce particulate matter emissions to improve air quality • Reduce energy use CONDITIONS WHERE PRACTICE APPLIES This standard applies to the planning and functional design of all sprinkler system components (e.g., laterals, risers, nozzles, heads, and pressure regulators). Individual sprinkler design discharge rates covered by this standard typically have design nozzle discharge rates exceeding 1 gallon per minute and wet the entire field surface uniformly. Areas must be suitable for sprinkler water application, and have a water supply of adequate quantity and quality for intended purpose(s). This standard applies to planning and design of sprinkler application systems for: • meeting crop water demands • crop cooling, frost protection, or bloom delay • leaching or reclamation of saline or sodic sols, or solis contaminated by other chemicals that can be controlled by leaching <td< td=""><td>DEFINITION The process of determining and controlling the volume, frequency, and application rate of irrigation water. PURPOSE This practice is used to accomplish one or more of the following purposes: • Improve irrigation water use efficiency • Minimize irrigation-induced soil erosion • Protect surface and ground water quality • Manage salts in the crop root zone • Manage air, soil, or plant microclimate • Reduce energy use CONDITIONS WHERE PRACTICE APPLIES This practice is applicable to all currently irrigated lands. CRITERIA General Criteria Applicable to All Purposes Develop an irrigation on one or more of the following methods: • Evapotranspiration on one or more of the following methods: • Soil moisture monitoring, • Soil moisture monitoring, • Computerized irrigation scheduling, utilizing local real-time climate data, soil, and crop growth characteristics (e.g., remote telemetry data systems coupled with cloud-based irrigation scheduling using the soil-water balance method), • Plant monitoring (e.g., leaf water potential or leaf/canopy temperature measurements).</td></td<>	DEFINITION The process of determining and controlling the volume, frequency, and application rate of irrigation water. PURPOSE This practice is used to accomplish one or more of the following purposes: • Improve irrigation water use efficiency • Minimize irrigation-induced soil erosion • Protect surface and ground water quality • Manage salts in the crop root zone • Manage air, soil, or plant microclimate • Reduce energy use CONDITIONS WHERE PRACTICE APPLIES This practice is applicable to all currently irrigated lands. CRITERIA General Criteria Applicable to All Purposes Develop an irrigation on one or more of the following methods: • Evapotranspiration on one or more of the following methods: • Soil moisture monitoring, • Soil moisture monitoring, • Computerized irrigation scheduling, utilizing local real-time climate data, soil, and crop growth characteristics (e.g., remote telemetry data systems coupled with cloud-based irrigation scheduling using the soil-water balance method), • Plant monitoring (e.g., leaf water potential or leaf/canopy temperature measurements).

Resources

MICHIGAN STATE UNIVERSITY Extension

MSU Extension – Irrigation

https://www.canr.msu.edu/irrigation

https://engineering.purdue.edu/ABE/extension/H2OQual/Irrigation

RISK OF IRRIGATION WATER ON THE ROAD

PUBLISHED ON AUGUST 25, 2023

The risk associated with irrigation water on the road depends on the pressure and volume of water hitting the road and amount of traffic encountering it.

a share to be a to		IN SEC
A STATE OF THE REAL PROPERTY OF		2011 F
Security	940 L	101

THE IMPORTANCE OF CHECKING IRRIGATION SYSTEM UNIFORMITY

PUBLISHED ON AUGUST 18, 2023 Evaluating and retrofitting your irrigation system can help to improve irrigation water use efficiency.

ADEQUATE WATER SUPPLY IS THE HEART OF AN **IRRIGATION SYSTEM**

PUBLISHED ON AUGUST 16, 2023

Irrigation investments start with securing an adequate water supply that meets the state legal requirements for large-scale water use and minimal potential for conflict with neighbors or adverse resource impacts.

MSU EXTENSION HOSTS SECOND ANNUAL BLUEBERRY RESEARCH FIELD DAY

PUBLISHED ON JULY 18, 2023 Join Michigan State University Extension for this blueberry-focused event on Sept. 6 in Fennville.

JUNE CROP WATER NEEDS

PUBLISHED ON JUNE 15, 2023

If soils are depleted of moisture beneath the developing plants, irrigators need to supply enough water to help establishing roots grow down into natural soil moisture.

Future Irrigation-Related Events

A MICHIGAN STATE UNIVERSITY

MSU Extension MI Ag Ideas to Grow With

Feb 27. 2024 Zoom

- Irrigation Scheduling
- Value of Irrigation Uniformity and Sprinkler Choice
- Irrigation Electrical Safety
- Pivot Control System

MSU WATER USE EFFICIENCY EXTENSION EDUCATOR

MICHIGAN STATE

POSITION SUMMARY

MSU Extension is searching for educators to fill two Water Use Efficiency positions. One position will be located in West Michigan in Mason County. The other position will be located in Southern Michigan in Branch County.

MICHIGAN STATE UNIVERSITY Extension Agriculture & Agribusiness

MSU EXTENSION AGRICULTURE AND AGRIBUSINESS INSTITUTE

Position Information

Position Title

Extension Educator

Salary

\$55,000 or Commensurate with education and experience

Benefits

Comprehensive benefits package: https://www.hr.msu.edu/benefits/index.html

Location

Coldwater (Branch County) or Scottville (Mason County)

To Apply

Current MSU Employees: Access the EBS portal. Under the My Career and Training section, select the Careers @ MSU tile to view Internal Job Postings.

External Applicants: Visit http://careers.msu.edu

Posting Number: 875065

Application Deadline: August 21, 2023

Contact for Questions

msue.hr@msu.edu

Water Use Efficiency Extension Educator (2 positions available)

Position Overview

These positions will provide leadership and programming expertise in water efficiency, water use, and conservation practices related to sustainable irrigation. With an emphasis on best management practices to improve water use conservation and efficiency, these positions help farmers improve water and energy use efficiency in their production systems through education programs, resource development, and individual consultation to reduce water use while maintaining profitable and viable production systems.

West Michigan Water Use Efficiency Educator

The focus of this position will be to emphasize best management practices to improve water use conservation and efficiency in irrigation systems for specialty crop production. Provide support for efficient use of irrigation and other water use systems in sustainable production of agricultural products.

Although negotiable, there will be space available for this position to work from the Mason County MSU Extension office located in Scottville, Michigan.

Southern Michigan Water Use Efficiency Educator

The focus of this position will be to emphasize best management practices to improve water use conservation and efficiency in irrigation systems for annual field crop production and provide education regarding large volume water withdrawal for persons operating animal agricultural facilities. Provide support for efficient use of water in annual crop and livestock production systems for the sustainable production of agricultural products.

Although negotiable, there will be space available for this position to work from the Branch County MSU Extension office located in Coldwater, Michigan.

These positions may be eligible to utilize a flexible work environment.

Qualifications

Minimum Qualifications (see full description for complete list of requirements)

 Master's degree from an accredited institution in a field of study related to agronomy, agriculture engineering, animal science, biosystems, hydrology, or related field must be earned by date of hire.

Application Process

View full description and apply through the <u>MSU careers</u> page. Search for posting 875065 using the Job Search field. Candidates can indicate their preference for location within their cover letter.

MICHIGAN STATE UNIVERSITY Extension

Biosystems & Agricultural Engineering (BAE)

Younsuk Dong

dongyoun@msu.edu

Lyndon Kelley kelleyl@msu.edu

MSU Extension – Irrigation https://www.canr.msu.edu/irrigation

Project

GREEEŃ

U.S. Department of Agriculture

