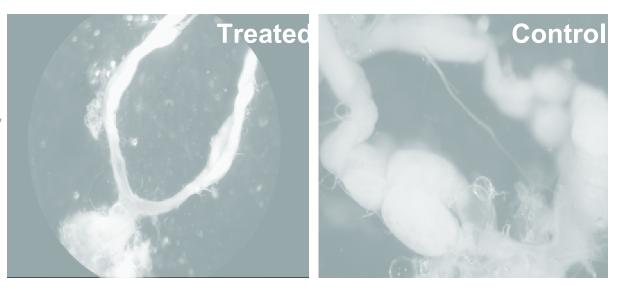
Using Insect Growth Regulators and Biopesticides in Your Orchards

2009 Orchard and Vineyard Show


Renee Pereault Mark Whalon

Michigan State University Department of Entomology

Insect Growth Regulators: Esteem and Novaluron

Esteem

Target 2nd generation
Post-harvest cherry border-row spray
Females commit fat body to producing eggs out of their normal life cycle
Low cost, no residue issues

"Biopesticides"

- Def: pesticides derived from such natural materials as animals, plants, fungi, bacteria, viruses, and certain minerals
 - Microbial
 - Bacterium, fungus, virus, protozoan
 - Biochemical
 - Naturally occurring substances that control pests by non-toxic means
 - eg. Insect sex pheromones, kaolin clay

PEST

BIOPESTICIDE

Plum Curculio

Entomopathogenic nematodes and fungi

Borers

Entomopathogenic nematodes

Codling Moth

Entomopathogenic nematodes and granulosis virus

Entomopathogens

Nematodes

-Steinernema -Heterorhabditis



Fungi

- -Beauveria bassiana
- -Metarhizium anisopliae

Plum Curculio Life History

Plum Curculio Background

- Damage:
 - Feeding & oviposition scars
 - Zero tolerance for larvae in processed fruit

- Few Organic Management Tactics:
 - Repeated kaolin clay coverage
 - Pyganic
 - Livestock

Plum Curculio Pathogen Experiment Design

-Larvae placed on surface of enclosed pots installed in 5 orchards

-Soil surface of each pot treated with a pathogen on day 0

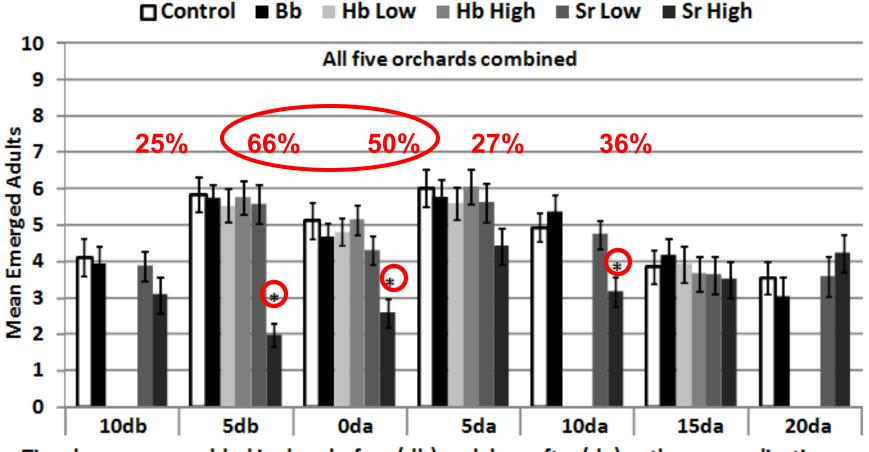
-Counted number of adults emerging from pots

Plum Curculio Pathogen Experiment Design

Pathogens:	Rates:					
-B. bassiana GHA (Mycotrol-O®)	(1) 5x10 ¹³ conidia/ha					
-H. bacteriophora (Utah, unformulated)	(2) 1x10 ⁹ or 4x10 ⁹ IJ/ha					
-S. riobrave (355 strain, Biovector®)	(2) 1x10 ⁹ or 4x10 ⁹ IJ/ha					
Control (meter)						

Timings:

-COILLOI (water)


-Introduce larvae to soil -10, -5, 0, 5, 10, 15, or 20 d from pathogen application -Hb was not tested for -10, 10, or 20 d

Design:

-36 treatments total

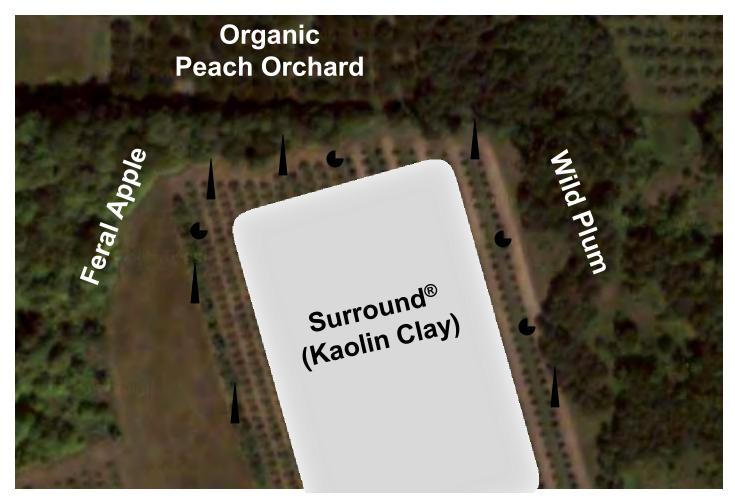
-Means comparisons made within each timing (α=0.5) -8 reps per orchard, under two tree rows

Plum Curculio Pathogen Experiment Results

Time larvae were added in days before (db) and days after (da) pathogen application

Average number of adult plum curculios emerging from pathogen-treated soil. Soils were treated with the fungus *Beauveria bassiana* (Bb) or the nematodes *Heterorhabditis bacteriophora* or *Steinernema riobrave* at a low or high rate (Hb Low, Hb High, Sr Low, Sr High). Larvae were placed on soil either - 10, -5, 0, 5,10, 15, or 20 days from pathogen application. Bars with an asterisk (*) denote significantly lower means within a day-timing. Note: Hb Low and High were not included for the -10, 10, or 20 day treatments.

Plum Curculio Pathogen Experiment Results: Orchards


		nt Redu r <i>S. rio</i>					
	-10 d	-5 d	0 d	5 d	10 d	15 d	20 d
All Orchards	25	66	50	27	36	8	-18
Loamy Sand	48	89	56	-22	25	-26	12
Sandy Loam	45	69	70	70	41	55	43
Loam	14	65	82	44	36	15	-24
Clay Loam	33	50	4	16	56	4	-79
Loam, High Org.	34	17	21	-10	50	-18	10

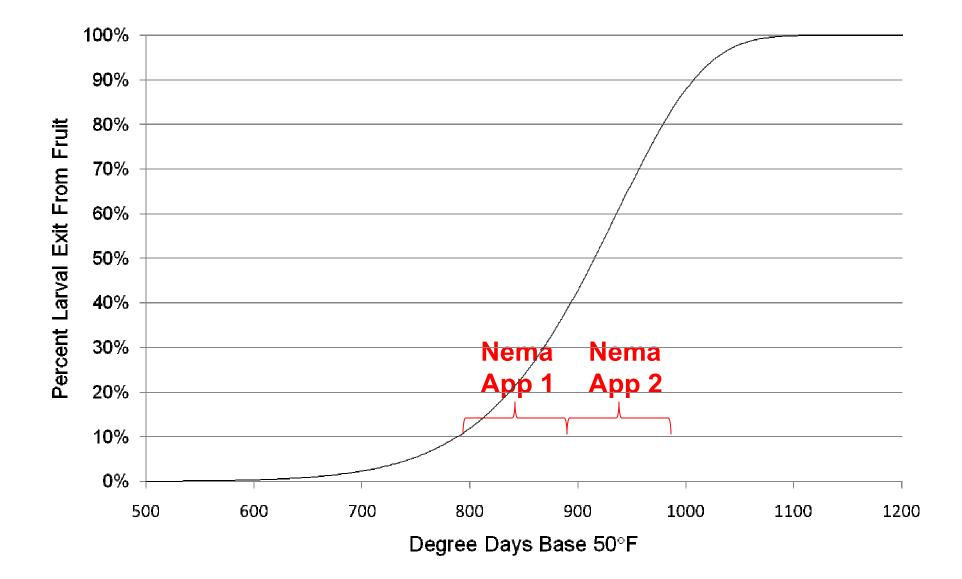
Plum Curculio Pathogen Experiment Discussion

- *B. bassiana* significantly suppressed adult emergence by 48-77% in low sand sites 1/3 yr
- S. riobrave most effective in high sand; larvae introduced
 -5, 0, or 10 d from pathogen; pupae susceptible
- Physical properties of soils top 5 cm
- Foraging strategies: "sit-and-wait" carp vs. active bac
- Optimal soil temp ranges: within ranges MI summer
- Formulation: gel vs. vermiculite, UV
- Fungicides
- Water activity: micro-jet sprinkler irrigation in citrus

Plum Curculio Pathogen Experiment

- Will targeting larvae reduce next summer's damage?
 - Spring immigration of adults surviving in refuges: wild hosts, nearby fruit trees, nearby organic orchards
 - Reduce cost by concentrating oviposition combine "push-pull" with oviposition monitoring

Plum Curculio Phenology Experiment Design



100 fruits held for — larva emergence

100 fruits immediately dissected

Plum Curculio Phenology Experiment Results

www.enviroweather.msu.edu

a ta huma Anti Etation - B enmod Ni Resion	Wan	eathe	ro-w	-					nedwt_	cpellet*	deal-	-fizial	- fanis	2+64	e-td	-						4	E G+:
	5	in pro	r-based duction	pest	, na	tural			æ,													100	MICHIGAN S
	Tert	Cherry Pl	ian Carculio				(8)			-		ľ											
) Ose datquititium Change date ra	A																						
Sensonia Tai	rt Cherr	y Plan	Carculio	Assis	a ch	ant (B	sepor	t Basi	nsi 1	1/25/	200	8 8):	(5)										
2008 7849	NIND IT	Degree 0	layo Depa 60 F	1				_	-		E.	ofte Dis	ANTEN	Bee	11		_				_		1
Day Date Mer	Miry Rood	Today	Series 301	10mg	10.00	10023	10/04	(0028	1008	1000	tin	1179	116	1102	1145	0.01	19418	11/11	1917	11(11	110	11/28	
HI 1100 33.0	Contract of the last		1998	86	02	-	98	10	和	58	đZ	Sec. 10	28		a	0	q	9	a	D			
1 11/21 24.8	100 million (100 million)	-	2558	1	02	fii)	52	-	80	40	\$2	-	20	1_	0	0.5	ů.	P	11	ù.			
ai 11/22 311 1			2050	10.1	02		50	-	49	58	92		28	1	đ	Q.	a	9	0	D	0		
un 11/29 38 6	-		2950	86	62	80	29) 52	50	52 50	_	52 42	40	28	1	0	0	0	D	a a	0	a o	as a	
aracastidata 2005 Tang	ventificities (F)	Degree 0	inyai Deane 190 P								24	wie De	te (Pu	l til por	71	_		_					
bes Data Man.											_		_	_									
and then the	Min Lug	Today	Since 3/1	1Drist	10.00	10022	10/04	10/25	10/28	1000	194	110	116	11/2	118	1101	11/13	11/18	11417	11/18	1101	11/23	
Ves 11/20 37	32 34	ņ	2068	88	82	50	68	58	43	58	đZ.	11() ap	28	t.	a	11(1) D	a	Ð	a	11/19 D	0	11/29	
Nes 11/28 37	32: 34 22 22	φ Q	2068 2069	55 52	82 82	50 60	58. 59	56 59	48 59	57	82 52	11() 40	28	1	0	D	a a	D D	a a	0	0 0	D D	
Vez 11/20 27 And 11/20 24 hu 11/27 27	32: 34 22 22 25 71	0 0 0	2088 2059 2059	88 59 50	82 62 62	50 60 80	58 59 58	56 590	60 50 60	578 559 550	42 52 92	110 40 40 40	28 26 20	1	0 0 0	0 0 0	a a a	0 0 0	a a a	0 0 0	0 0 0	0 Q Q	
Tues 11/28 37 Med 11/28 39 Thu 11/27 37 4 11/29 38	20 34 20 22 25 71 25 21	φ Q	2088 2059 2059 2056 2050	88 59 50 50	82 62 62 62	80 80 80	68 59 68 59	56 59 59 59	57 59 59 59	55 50 50 50	62 52 62 52	110 40 40 40 40 40 40	28 25 25 26	1	0 0 0	0 D D	a a a	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
Types 11/28 37 Med 11/28 34 Thu 11/27 34 Thu 11/29 36 Sat 11/29 35	32 34 23 23 25 31 26 31 27 32	0 0 0 0	2088 2088 2088 2088 2088 2089	55 59 50 50 50	82 62 62 62 62	50 50 50	68 59 68 59 59 59 59 50	56 59 59 50 50	47 50 60 50 50	58 59 59 59 59	62 52 52 52 62	110 8 8 8 8 8 8	28 28 28 28 28	1 1 1		0 0 0 0	0 0 0 0	0 0 0 0	a a a a	0 0 0 0	0 0 0 0	0 0 0 0	
Types 11/28 37 and 11/28 24 thu 11/27 37 4 11/29 38 Sat 11/29 38 Sat 11/29 38	32 34 23 33 25 71 26 31 27 32 35 31 37 32 38 30	0 0 0 0 0 0	2068 2069 2069 2069 2069 2069	55 59 59 50 50 50	62 62 62 62 62 62	80 80 80 80 80 80	58 59 59 59 59 59 59	56 59 59 50 50 50 50	50 50 50 50 50 50 50	82 38 38 38 38 38 38	62 52 62 62 52	110 8 8 8 8 8	20 20 20 20 20 20 20		0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
Types 11(28) 37 and 11(28) 24 thu 11(27) 37 34 11(28) 36 34 11(29) 36 34 11(29) 36 34 11(29) 36 34 11(29) 36 344 11(29) 36 347 11(29) 36	32 34 23 23 25 31 26 31 27 32	0 0 0 0 0 0	2088 2088 2088 2088 2088 2089	50 50 50 50 50 50 50	82 62 62 62 62	03 03 03 03 03 03 03 03 03 03 03	58 59 59 59 59 59 59 59 59	56 59 59 50 50 50 50 50	47 50 60 50 50	8 8 8 8 8	62 52 52 52 62	110 8 8 8 8 8 8	28 28 28 28 28	1 1 1 1		0 0 0 0	0 0 0 0	0 0 0 0	a a a a	0 0 0 0	0 0 0 0	0 0 0 0	

Ongoing Research: Targeting Adult Plum Curculio with Fungi

Borers

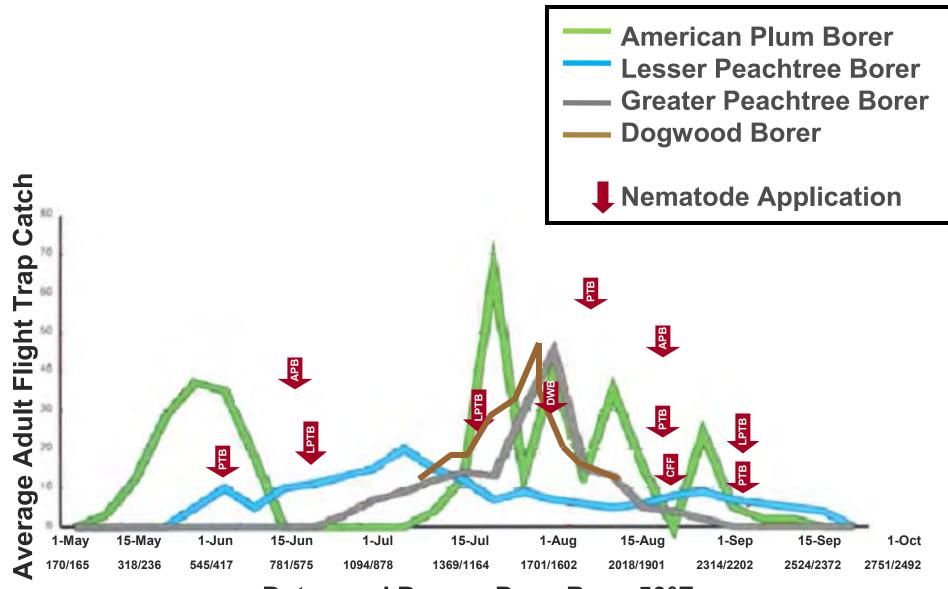
Greater Peachtree Borer Lesser Peachtree Borer American Plum Borer Dogwood Borer

Borers: Sites

			# T	rees	Evaluation			
Site	Сгор	Location	Treated	Control	Destructive	Non- Destructive		
1	Peach	SW	32	32	2-Oct			
2	Tart cherry	SW	28	28	4-Nov			
3	Tart cherry	NW	32	32		summer 2009		
4	Tart	NW	32	32	16-Oct			
5	Sweet	NW	32	32	16-Oct	summer 2009		
6	Apple	CENTRAL	32	32		summer 2009		
7	Apple	CENTRAL	32	32	15-Oct			

Borers: Applications

Backpack sprayer application of nematode S. carpocapsae (BionemC, organic formulation) Rate: 300,000 Infective Juveniles (IJ's) in 2 cups water applied to tree trunks and 300,000 IJ's in 2 cups water applied under trees to a radius of 0.5 m from the trunk


At one site:

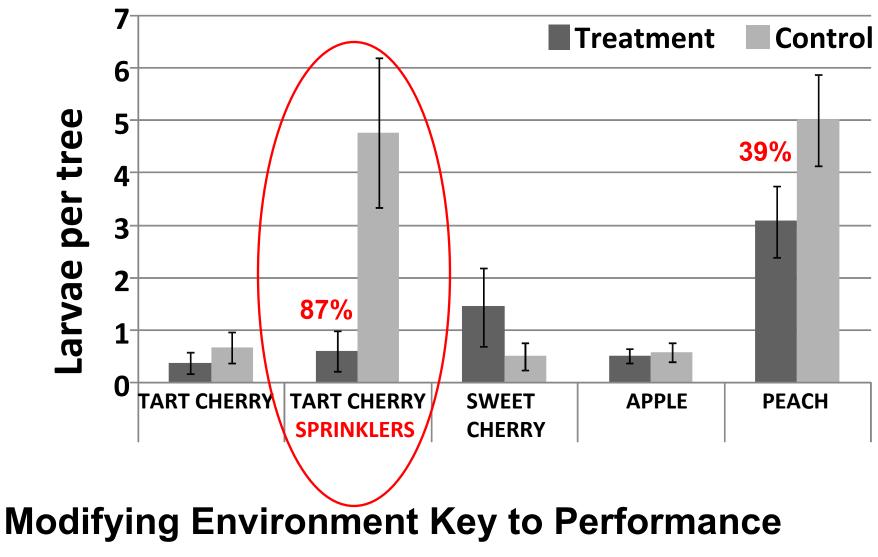
Wet 1 hr (30 gallons/acre/hr) with microjet sprinklers before nematode application

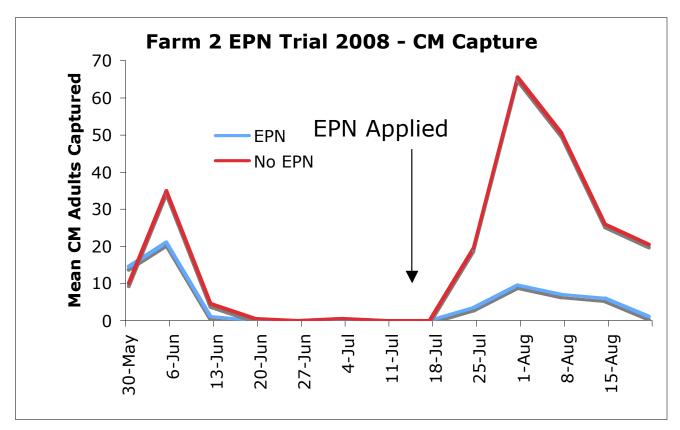
Wet 1 hr/day three days post-treatment

Borers: Timing

Dates and Degree Days Base 50°F (from MAWN: Fennville site 2007 / 2006 values)

Borers: Evaluations




Borers: Early Results

Solid State Delivery System

Codling Moth Larry Gut & Dave Epstein

Same organic formulation of *S. carpocapsae* (BionemC) -70% reduction of live larvae

Adult CM captures in pheromone-baited traps for organic farm two showed significant declines following the mid-season EPN application.

Codling Moth *Granulosis* Virus

- First collected in Mexico and tested in 1960's (Tanada, 1964)
- Highly lethal baculovirus protected by protein coat
- Must be ingested by neonate larvae for mortality to occur (Lacey and Shapiro-Ilan)
- Effectiveness in the field has been inconsistent (Charmillot 1993, Huber and Dickler 1977) - High incidence of stings

Slow acting Disease progresses over 5 - 10 days Short residual activity Determine the efficacy and optimum patterns of use of CpGV

Codling Moth Summary

- Multiple Targets:
 - -Egg with oil
 - Larva with granulosis virus* & nematodes
 - *granulosis virus Low Rate Frequent Applications
 - -Adult with mating disruption

Acknowledgements

Enviro-weather Weather-based pest, natural resource, and production management tools

Thanks to Dan Nortman, Pete Nelson, Karlyn Page, and Zach Koan for technical assistance.

Thanks to Larry Gut Lab and Dave Epstein for Codling Moth trials