

Herbicide Selection and Management in Pome and Stone Fruit

Bernard Zandstra

Michigan State University

Traverse City, MI

January 25, 2012

Herbicide Mode of Action

Herbicides target a specific plant enzyme, biochemical pathway, or reproductive function. This is called the <u>Mode of Action</u> (<u>MOA</u>). The active place in the biochemical or reproductive pathway is called the **Target Site**.

MOA and Target Site

MOA and Target Site for herbicides in the same chemical family are similar. Using the same or related compounds may lead to crop injury or weed resistance. The more active a herbicide is, the greater the risk of weed resistance.

Chemical Families and Representative Herbicides (1)

Family	Herbicide	MOA
Substituted	Karmex,	Photosystem II
Urea	Lorox	Inhibitor
Substituted	Sinbar,	Photosystem II
Uracil	Hyvar X	Inhibitor
Triazine	Princep, Aatrex	Photosystem II Inhibitor

<u>Chemical Families and</u> <u>Representative Herbicides (2)</u>

Family	Herbicide	MOA
Sulfonylurea	Matrix, Sandea	Acetolactase Synthase Inhibitor
Dinitroaniline	Prowl, Surflan	Mitosis Inhibitor
Diphenylether	Goal, Blazer	Protoporphyrinogen Oxidase Inhibitor

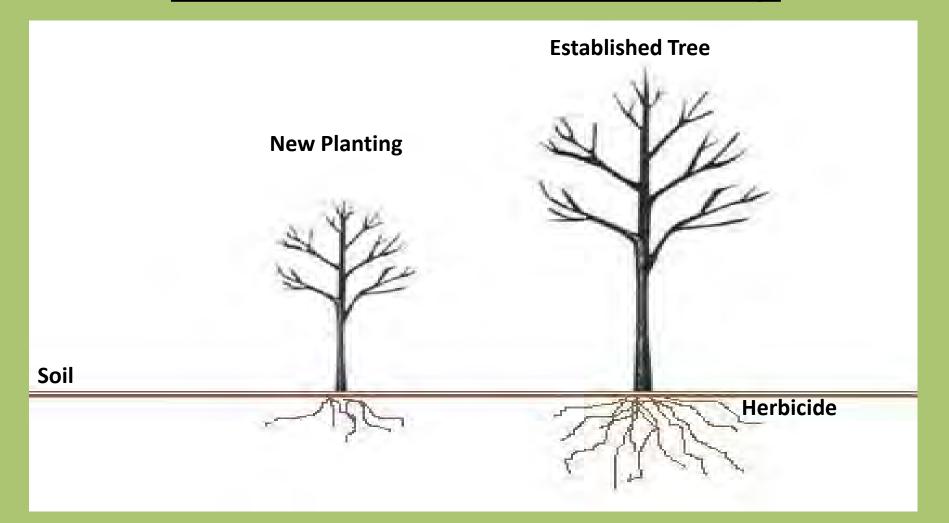
<u>Chemical Families and</u> <u>Representative Herbicides (3)</u>

Family	Herbicide	MOA
Triazolinone	Aim, Spartan	PPO Inhibitor
Phenyl-Phthalimide	Chateau	PPO Inhibitor
Pyrimidinedione	Treevix (Kixor)	PPO Inhibitor

Chemical Families and Representative Herbicides (4)

Family	Herbicide	MOA
Nitrile	Gallery, Casoron	Cellulose Synthesis Inhibitor
Pyridazinone	Solicam	Pigment Inhibitor
Triketone	Callisto	Carotenoid Synthesis Inhibitor

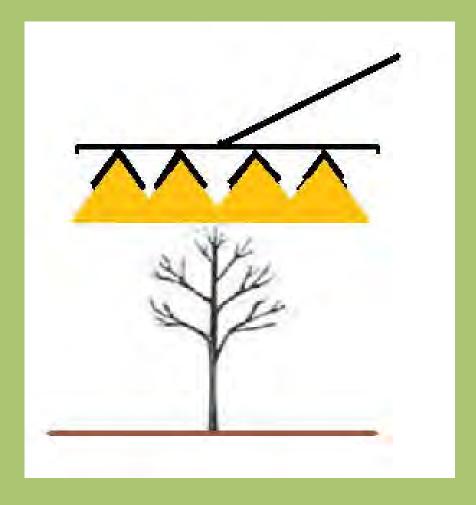
Methods of Selectivity



- Metabolism of the herbicide
- Placement in time or space
- Plant anatomical differences
- Resistance at site of action
- Differences in stage of growth

Fruit Tree Selectivity

Directed Application



Broadcast Application

Leaching Potential

- The more soluble a herbicide is the greater the potential for leaching into the root zone and for crop injury.
- Sandy soil with less than 1% organic matter is very porous and herbicides may leach into tree root zone. Observe label precautions about soil type and herbicide rates.

Surflan

Prowl H20

Devrinol

Kerb

Residual Herbicides for Tree Fruit (1)

20

44

70

60

Harbicida		<u>Solubility</u>	Half Life
<u>Herbicide</u>	<u>MOA</u>	<u>(ppm)</u>	(days)

Mitosis Inhibitor

Mitosis Inhibitor

Mitosis Inhibitor

Mitosis Inhibitor

3.0

0.3

73

15

Alion

Residual Herbicides for

Tree Fruit (2)

<u>Herbicide</u>	<u>MOA</u>	(ppm)	(days)
Trellis (Gallery)	Cellulose Synthesis Inhibitor	1.0	120
Casoron	Cellulose Synthesis	21	60

Inhibitor

Inhibitor

21 Cellulose Synthesis

Goal

Treevix

Residual Herbicides for

Harbicida	NAOA	Solubility	Half L
<u>Herbicide</u>	<u>MOA</u>	(ppm)	(day

Chateau **PPO Inhibitor** 20

PPO Inhibitor

PPO Inhibitor

0.1

2100

35

Matrix

Sandea

Mission

Residual Herbicides for

30

16

Tree Fruit (4)

Herbicide	MOA	<u>Solubility</u>	<u>Half Life</u>
<u>nerbicide</u>	IVIOA	<u>(ppm)</u>	(days)

10

15

2100

ALS Inhibitor

ALS Inhibitor

ALS Inhibitor

Karmex

Princep

Sinbar

Residual Herbicides for

90

60

120

<u>Herbicide</u>	<u>MOA</u>	<u>Solubility</u>	<u>Half Life</u>
		<u>(ppm)</u>	(days)

42

710

PSII Inhibitor

PSII Inhibitor

PSII Inhibitor

Postemergence Herbicides

for	Tree	Fruit	(1)
101	HEC	Hult	

<u>Herbicide</u>	MOA	Solubility
		(nnm)

(ppm)

(days)

Half Life

Roundup

Gramoxone

EPSPS Inhibitor

15K

45

PSI Inhibitor **ACCase Inhibitor**

ACCase Inhibitor

ACCase Inhibitor

620K

4400

10

1000

15

5

3

Fusilade DX Poast

Select

Sandea

Postemergence Herbicides

30

for Tree Fruit (2)

<u>Herbicide</u>	<u>MOA</u>	Solubility (ppm)	<u>Haif Life</u> (days)
Rely 280	Glutamine Inhibitor	1370K	7
Aim	PPO Inhibitor	12K	0
Venue	PPO Inhibitor	1	7
Treevix	PPO Inhibitor	2100	17

15

ALS Inhibitor

<u>Adjuvants</u>

 Material added to the spray mixture that helps overcome spray barriers and disruptors.

Spray Barriers

- Natural plant characteristics that reduce herbicide contact or in other ways reduce effectiveness of herbicides.
- Eg: Leaf angle, cuticle wax, leaf hairs, growth habit, plant size, reproductive stage, level of dormancy.

Spray Disruptors

- Factors other than plant physiology and morphology that cause reduced effectiveness of herbicides.
- Eg: Hard water, high pH water, tank mix components, wind, rain.

Types of Adjuvants



- Activator Agents overcome plant spray barriers.
- 2. Spray Modifier Agents modify physical and mechanical barriers.

Activator Agents

- 2. <u>Crop Oil Concentrate (COC)</u> 80% petroleum oil and 20% surfactant.
- 3. Methylated Seed Oil (MSO) Oil

concentrate from soybean oil; usually 100% oil.

Effects of Adjuvants on Spray Droplets

waxy leaf

http://pubs.cas.psu.edu/freepubs/pdfs/uo221.pdf

surfactant on waxy leaf

Spray Modifier Agents

- 1. Acidifiers eg LI700
- 2. N Fertilizer urea, ammonium nitrate
- 3. Compatibility Agents
- 4. Anti-Foam
- 5. Sticker
- 6. Drift Control
- 7. Silicone Surfactants Silwet L-77, Sylgard 309

Adjuvant Selection

- Nonionic Surfactant (NIS) for most postemergence herbicide application.
- 2. Crop Oil Concentrate (COC) for herbicides that recommend it on the label.
- 3. Methylated Soybean Oil (MSO) for some ALS inhibitors.
- 4. Acidifier for hard water if pH > 7.
- 5. Sticker spreader for insecticide and fungicide application.
- 6. Drift retardant for blast sprayers.

Optimum Weed Control

- 1. Know your weeds.
- 2. Know your herbicides.
- 3. Know your crop.

<u>Weeds</u>

- 1. Identify weeds to family and genus if possible.
- 2. It is normally easier to control weeds preemergence than postemergence.
- 3. For perennials, attack them at several stages during the year.

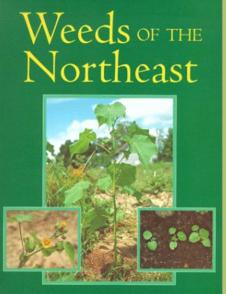
Weed Identification Websites

- Weed Science Society of America Weed ID:
 - http://www.wssa.net/Weeds/ID/index.htm
- Identifying Weeds in Field Crops:
 - http://www.ipm.msu.edu/weeds-field.htm
- MSU Turf Weeds:
 - http://msuturfweeds.net/
- Midwestern Turfgrass Weed Identification and Control:
 - http://www.turf.uiuc.edu/weed_web/index.htm
- University of Illinois Weed Science:
 - http://weeds.cropsci.illinois.edu/weedid.htm

Weed Identification

Publications (1)

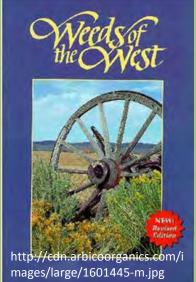
Beyond the Color Atlas


"More Turfgrass and Related Weeds: Beyond the Color Atlas"
-L.B. McCarthy & D.W. Hall

A Guide to Identificati

A Guide to Weed
Identification for
Turfgrasses,
Ornamentals, Plant
Nurseries, Roadsides,

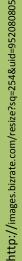
https://shopping.clemson.edu/imag

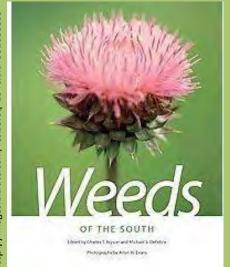

ATurfgrass and Related Weeds:

RICHARD H. UVA http://www.cornellpress.cornell.e du/book/?GCOI=80140100077290 "Weeds of the Northeast"

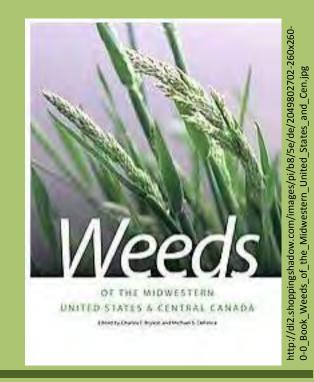
-R. Uva, J. Neal,

and J. DiTomaso


"Weeds of the Northeast"


-R. Uva, J. Neal, & J. DiTomaso

Weed Identification Publications (2)



"Weeds of the South"

-Charles T. Bryson

& Michael S. DeFlice

"Weeds of the Midwestern
United States & Central Canada"
-Charles T. Bryson &
Michael S. DeFelice

<u>Herbicides</u>

- 1. Know the Mode of Action (MOA). Use at least 2 MOA preemergence. Apply preemergence herbicides in fall and spring. Rotate MOA each year.
- 2. Include glyphosate in fall and spring, preemergence applications to kill biennials and winter annuals.
- 3. Use postemergence herbicides during the growing season to kill emerged weeds. Some weeds can be killed only postemergence.

 Observe PHI's.
- 4. Be aware of potential crop injury.

Crop

- 1. Each crop has specific herbicide registrations. Do not assume all trees are the same.
- 2. Young trees are more susceptible; roots are shallow and bark is thinner.
- 3. Watch for crop injury symptoms.
- 4. Maintain good pesticide records.

A Weed Control Program For Apple (1)

Year 0

Fall: Chateau 8-10 oz + glyphosate 1 qt

Year 1

Spring: Sinbar 1 lb or Karmex 3 lb

June: glyphosate 1 qt + Venue 2 oz

Fall: **Alion** 5 oz + glyphosate

A Weed Control Program For Apple (2)

Year 2

Spring: Matrix 4 oz + Karmex 3 lb + glyphosate

June: Treevix 1 oz + Venue 1 oz

Fall: Solicam 4 lb + Casoron CS 1.4 gal + glyphosate

Year 3

Spring: **Princep** 4 lb + **Surflan** or **Prowl** 4 qt

June: Rely 280 3 pt + Venue 1 oz

Fall: Chateau 8-10 oz + glyphosate

A Cherry Weed Control Program (1)

Year 0

Fall: Chateau 6-10 oz + glyphosate 1 qt

Year 1

Spring: **Prowl** 4 qt + **Matrix** 4 oz

June: glyphosate 1 qt or Aim 2 oz + Venue 2 oz

Fall: Alion 5 oz + glyphosate

A Cherry Weed Control Program (2)

Year 2

Spring: Goal Tender 2 qt + Surflan 2 qt

June: Gramoxone 2 qt (28 day PHI) + Venue 2 oz

Fall: Chateau 0-1 oz + glyphosate 1 qt

Year 3

Spring: **Prowl** 4 qt + Matrix

June: Gramoxone 2 qt + Venue 2 oz

Fall: **Alion** 5 oz + glyphosate

New Labels Coming for Tree Fruit

- Mission (flazasulfuron) Long residual
- Trellis (isoxaben) Long residual
- Spartan (sulfentrazone) Composite + pigweed control
- Stinger (clopyralid) Post composite, legume, nightshade

Special Weed Problems

Yellow Nutsedge – **Sandea** – Post

Quackgrass – **Kerb** – Fall

Annual Bluegrass – **Select Max**

The End

