Henry Chung
Click here to see a list of Henry Chung's publications on Google Scholar.
Bio
Overview
Our research program seeks to investigate the molecular mechanisms underlying how insects communicate and adapt in our changing world. We are also applying our research to understanding and managing pest insects, such as the Spotted Wing Drosophila.
Current assignment: Teaching 25% | Research 75%
Program Description
Teaching
Teaching and mentoring are important aspects of my career objective. I feel enormous satisfaction when I helped a student understand a difficult topic or inspired them to learn more about a specific subject. Student success is of paramount importance to me. In even years, I will teach ENT451 Insect Physiology in the spring semester and co-teach ENT851 Molecular Entomology with Prof. Ke Dong in the fall semester. In odd years, I will teach a seminar course on Insect Chemical Ecology.
Research
The processes of adaptation and speciation have been conceptually intertwined since the time of Darwin, who suggested that adaptation to different environments leads to the evolution of new traits and at the same time, new species. To integrate the “how” of molecular mechanisms with the “why” of ecological relevance, my research focuses on the molecular basis of ecological adaptation and how traits which have dual roles in adaptation and mating behavior (dual traits) form at the molecular and genetic levels to cause reproductive isolation and the formation of new species (Chung & Carroll 2015). One example of such traits are insect cuticular hydrocarbons (CHCs). CHCs play roles in both desiccation resistance and mate choice in insects. We use fruitflies from the genus Drosophila to answer following research questions:
- How does the evolution of CHCs lead to differences desiccation between Drosophila species?
- What is the molecular mechanism underlying this evolution?
- Is there is constraints governing the evolution of CHCs involved in both desiccation resistance and mate choice?
Being in an entomology department, I am also interested in understanding the biosynthesis on pheromones in different insect species and working with other groups in understanding the genomic and molecular basis of insecticide resistance in pest insects.
I am looking for creative and motivated students (undergrads and graduate students) as well as independent postdocs to join my research program. As a new assistant professor, I will work alongside you at the bench. This means that I will provide substantial training and mentorship, as well as being motivated to publish good research rapidly.
Concentration
- Insect Pheromone Evolution
- Molecular Basis of Insecticide Resistance
- Ecological Adaptation and Speciation
- Insect Physiology
Professional experience
- 2017 – Present - Assistant Professor, Department of Entomology, Michigan State University
- 2015-2016 - Research Specialist, Laboratory of Cellular and Molecular Biology, University of Wisconsin-Madison and Howard Hughes Medical Institute
- 2009-2014 - Research Associate, Laboratory of Cellular and Molecular Biology, University of Wisconsin-Madison and Howard Hughes Medical Institute
- 2004-2008 - Graduate Student, The University of Melbourne
- 2002 - Laboratory Technologist, Department of Neurology, Singapore General Hospital
Selected Publications
- Yew J and Chung H (2017). Drosophila as a holistic model for insect pheromone signaling and processing Curr Opin. Insect Sci. 24, 15-20
- Chiang YN, Tan KJ, Chung H, Lavrynenko O, Shevchenko A and Yew JY (2016). Steroid Hormone Signaling Is Essential for Pheromone Production and Oenocyte Survival. PLoS Genetics doi:10.1371/journal.pgen.1006126
- Yassin A , Bastide H , Chung H , Veuille M, David JR, and Pool JE (2016). Ancient balancing selection at tan underlies female color dimorphism in Drosophila erecta. Nat Comm 7, Article number: 10400 doi:10.1038/ncomms10400
- Yew JY and Chung H (2015). Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 59, 88-105 doi:10.1016/j.plipres.2015.06.001
- Chung H* and Carroll SB* (2015). Wax, Sex and the Origin of Species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822-30 doi: 10.1002/bies.201500014 *co-corresponding author
- Chung H, Loehlin DW, Dufour HD, Vacarro K, Millar JG, and Carroll SB (2014). A single gene affects both ecological divergence and mate choice in Drosophila. Science 343, 1148-1151
- Harrop T, Sztal T, Lumb C, Good RT, Daborn PJ, Batterham P* and Chung H* (2014). Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila. PLoS ONE e84879. doi:10.1371/journal.pone.0084879 *corresponding author
- Sztal T, Chung H, Berger S, Currie PD, Batterham P, and Daborn PJ (2012). A cytochrome P450 conserved in insects is involved in cuticle formation. PLoS ONE 7(5):e36544
- Chung H, Boey A, Lumb C, Willoughby L, Robin C, Batterham P and Daborn PJ (2011). Induction of a detoxification gene in Drosophila melanogaster requires an interaction between tissue specific enhancers and a novel cis-regulatory element. Insect Biochem Mol Biol 41, 863-71
- Martin J, Chung H, Balakrishnan T, and Robin C (2010). Preliminary Physical Maps of the Chironomus Genome, with a Focus on Genes Potentially Involved in Response to Heavy Metals. In: Ferrington, L. C., Jr. (ed.). Proceedings of the XV International Symposium on Chironomidae. Chironomidae Research Group, University of Minnesota, Saint Paul, Minnesota, pp. 222-234.
- Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, and Daborn PJ (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci U S A 106, 5731–5736
- Sztal T, Chung H, Gramzow L, Daborn PJ, Batterham P, and Robin C (2007). Two independent duplications forming the Cyp307a genes in Drosophila. Insect Biochem Mol Biol 37, 1044-1053
- Chung H, Bogwitz MR, McCart C, Andrianopoulos A, ffrench-Constant RH, Batterham P, and Daborn PJ (2007). Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175, 1071–1077
- Willoughby L, Chung H, Lumb C, Robin C, Batterham P, and Daborn PJ (2006). A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and Phenobarbital. Insect Biochem Mol Biol 36, 934-942.
- Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O’Keefe M, McKenzie JA, Batterham P, and Daborn PJ (2005). Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc Natl Acad Sci U S A 102, 12807-12812.
Related Work
-
MSU researchers awarded $750K grant to develop sustainable management for potato early die complex
Published on May 1, 2023
-
Plant-eating nematodes and the key to fighting them
Published on November 3, 2021
-
New National Science Foundation grant will integrate research and science outreach
Published on August 2, 2021
-
New grant to help carrot and wheat growers deter invisible pests
Published on March 11, 2021
-
Altered tour: Synergy from the intersect of ant and human communication
Published on February 19, 2019